Abstract

We demonstrate a fiber-microresonator dual-cavity architecture with which we generate 880 nm of comb bandwidth without the need for a continuous-wave pump laser. Comb generation with this pumping scheme is greatly simplified as compared to pumping with a single frequency laser, and the generated combs are inherently robust due to the intrinsic feedback mechanism. Temporal and radio frequency (RF) characterization show a regime of steady comb formation that operates with reduced RF amplitude noise. The dual-cavity design is capable of being integrated on-chip and offers the potential of a turn-key broadband multiple wavelength source.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  2. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [CrossRef] [PubMed]
  3. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
    [CrossRef] [PubMed]
  4. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “A silicon-based monolithic optical frequency comb source,” arXiv:1102.0326.
  5. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [CrossRef] [PubMed]
  6. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
    [CrossRef] [PubMed]
  7. S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
    [CrossRef]
  8. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
    [CrossRef] [PubMed]
  9. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
    [CrossRef]
  10. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [CrossRef]
  11. Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  12. Z. Jiang, D. E. Leaird, A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
    [CrossRef] [PubMed]
  13. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [CrossRef] [PubMed]
  14. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [CrossRef] [PubMed]
  15. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun 3, 765 (2012).
    [CrossRef] [PubMed]
  16. L. Caspani, M. Peccianti, A. Pasquazi, M. Clerici, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked low threshold OPO in a CMOS-compatible microring resonator,” CM2M.2, CLEO: Science and Innovations (2012).
  17. A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21(11), 13333–13341 (2013).
    [CrossRef] [PubMed]
  18. A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
    [CrossRef] [PubMed]
  19. N. A. Cholan, M. H. Al-Mansoori, A. S. M. Noor, A. Ismail, M. A. Mahdi, “Multi-wavelength generation by self-seeded four-wave mixing,” Opt. Express 21(5), 6131–6138 (2013).
    [CrossRef] [PubMed]
  20. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
    [CrossRef]
  21. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
    [CrossRef] [PubMed]
  22. P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 114(767), 243–265 (1927).
    [CrossRef]
  23. C. Y. Jin, M. Y. Swinkels, R. Johne, T. B. Hoang, L. Midolo, P. J. van Veldhoven, and A. Fiore, “All optical control of the spontaneous emission of quantum dots using coupled-cavity quantum electrodynamics,” arXiv:1207.5311.
  24. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  25. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
    [CrossRef] [PubMed]
  26. D. D. Smith, H. Chang, K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
    [CrossRef]

2013 (3)

2012 (3)

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun 3, 765 (2012).
[CrossRef] [PubMed]

2011 (5)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[CrossRef]

2010 (1)

2008 (2)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

2007 (2)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

2002 (1)

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

1927 (1)

P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 114(767), 243–265 (1927).
[CrossRef]

Agazzi, L.

Al-Mansoori, M. H.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Ay, F.

Baets, R.

Bowers, J. E.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Bradley, J. D. B.

Carmon, T.

Caspani, L.

Chang, H.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Cholan, N. A.

Chu, S. T.

Clerici, M.

Cohen, O.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[CrossRef]

Dijkstra, M.

Dirac, P. A. M.

P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 114(767), 243–265 (1927).
[CrossRef]

Duchesne, D.

Fang, A. W.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Ferrera, M.

Foster, M. A.

Fuller, K. A.

Gaeta, A. L.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Ilchenko, V. S.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Ismail, A.

Jiang, Z.

Johnson, A. R.

Jones, R.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Kentischer, Th.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Lamont, M. R.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Z. Jiang, D. E. Leaird, A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Levy, J. S.

Liang, W.

Lipson, M.

Little, B. E.

Mahdi, M. A.

Maleki, L.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Matsko, A. B.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Morandotti, R.

Moss, D. J.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Noor, A. S. M.

Okawachi, Y.

Paniccia, M. J.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Papp, S. B.

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[CrossRef]

Park, H.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun 3, 765 (2012).
[CrossRef] [PubMed]

Pasquazi, A.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Peccianti, M.

Pollnau, M.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Razzari, L.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Roelkens, G.

Saha, K.

Salem, R.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Savchenkov, A. A.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Seidel, D.

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett. 36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Shim, B.

Smith, D. D.

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Udem, Th.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Vahala, K. J.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Z. Jiang, D. E. Leaird, A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Wen, Y. H.

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Wörhoff, K.

Yang, L.

IEEE Photon. Technol. Lett. (1)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Commun (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun 3, 765 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Nature (2)

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Opt. Express (7)

Z. Jiang, D. E. Leaird, A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[CrossRef] [PubMed]

T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21(11), 13333–13341 (2013).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

N. A. Cholan, M. H. Al-Mansoori, A. S. M. Noor, A. Ismail, M. A. Mahdi, “Multi-wavelength generation by self-seeded four-wave mixing,” Opt. Express 21(5), 6131–6138 (2013).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 114(767), 243–265 (1927).
[CrossRef]

Science (2)

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Other (3)

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “A silicon-based monolithic optical frequency comb source,” arXiv:1102.0326.

L. Caspani, M. Peccianti, A. Pasquazi, M. Clerici, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked low threshold OPO in a CMOS-compatible microring resonator,” CM2M.2, CLEO: Science and Innovations (2012).

C. Y. Jin, M. Y. Swinkels, R. Johne, T. B. Hoang, L. Midolo, P. J. van Veldhoven, and A. Fiore, “All optical control of the spontaneous emission of quantum dots using coupled-cavity quantum electrodynamics,” arXiv:1207.5311.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for comb generation. The system is based on a dual-cavity design consisting of the silicon-nitride microresonator and an external fiber cavity.

Fig. 2
Fig. 2

Spectra illustrating the dynamics of the dual-cavity intracavity power in the fiber cavity as the system reaches steady state. (a) Initial state is seeded with noise. (b) Power in the fiber modes exceeds the power in the microresonator modes. (c)-(d) Buildup of intracavity power in the microresonator. (e) Lasing of the system at modes of the microresonator.

Fig. 3
Fig. 3

Output spectra of the dual-cavity system for a range of power levels in the bus waveguide. (a) Dual-cavity system oscillating at modes of microresonator. (b) Dual-cavity system oscillating at an external fiber cavity mode away from microresonator resonances.

Fig. 4
Fig. 4

Measured optical spectra as the polarization is adjusted towards quasi-TE (bottom). The system makes transitions from lasing in an external fiber cavity mode, away from a microresonator mode, to lasing and comb generation in a microresonator mode.

Fig. 5
Fig. 5

Parametric frequency comb spectra generated from silicon-nitride microresonators with FSR’s of (a) 230-GHz and (b) 80-GHz.

Fig. 6
Fig. 6

Dual-cavity-based comb generation with a 1.1 nm bandpass filter centered at (a) 1544 nm and, (b) 1558.7 nm.

Fig. 7
Fig. 7

(a) Optical frequency comb spectra for the system in the Q-switched state and (b) the corresponding real-time temporal measurement. (c) Comb spectrum for non-Q-switched case and (d) the corresponding temporal measurement.

Fig. 8
Fig. 8

Optical output spectra without (a) and with (b) coupling to the microresonator and (c) and (d) are the corresponding RF spectra, respectively. The insets in (c) and (d) show the RF noise from DC to 2 GHz.

Fig. 9
Fig. 9

Optical spectra for EDFA pump powers ranging from 15 to 103 mW. Parametric oscillation is obtained for an EDFA pump power of 20 mW (third row).

Metrics