Abstract

A simple solution for producing nanosecond laser pulses can be obtained using gain-switched fiber lasers. In this paper, we present an optimized single stage gain-switched ytterbium-doped fiber laser. Three fiber lengths were tested to show the impact of length on the laser output pulse. A pulse as short as 28 ns at 1.4 kW peak power and a maximum peak power of nearly 2 kW at 41 ns pulse duration was achieved. The laser possess a linear polarized output, very good beam quality of M2 < 1.1, and a spectral bandwidth of 0.11 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
    [CrossRef] [PubMed]
  2. R. Petkovšek, J. Saby, F. Salin, T. Schumi, F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20(7), 7415–7421 (2012).
    [CrossRef] [PubMed]
  3. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
    [CrossRef] [PubMed]
  4. M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
    [CrossRef]
  5. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, F. Hakimi, “Gain switching of a Nd+3-doped fiber laser,” Opt. Lett. 14(13), 671–673 (1989).
    [CrossRef] [PubMed]
  6. K. Hattori, T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
    [CrossRef]
  7. S. D. Jackson, B. C. Dickinson, T. A. King, “Sequence lasing in a gain-switched Yb3+,Er3+-doped silica double-clad fiber laser,” Appl. Opt. 41(9), 1698–1703 (2002).
    [CrossRef] [PubMed]
  8. N. Simakov, A. Hemming, S. Bennetts, J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
    [CrossRef] [PubMed]
  9. K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
    [CrossRef] [PubMed]
  10. M. Jiang, P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
    [CrossRef] [PubMed]
  11. Y. Tang, F. Li, J. Xu, “High peak-power gain-switched Tm doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
    [CrossRef]
  12. S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser,” in Fiber Lasers III, (SPIE, 2006), 61020O61021–61020O61025.
  13. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18(23), 23523–23528 (2010).
    [CrossRef] [PubMed]
  14. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
    [CrossRef] [PubMed]
  15. Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
    [CrossRef]
  16. C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
    [CrossRef] [PubMed]
  17. V. Agrež, F. Bammer, B. Podobnik, R. Petkovšek, “Influence of the retardation of the multiplexing element in a dual channel Q-switched laser,” Appl. Phys. B 112(1), 73–81 (2013).
    [CrossRef]
  18. V. Agrež, R. Petkovšek, “Gain-switched Yb-doped fiber laser for microprocessing,” Appl. Opt. 52(13), 3066–3072 (2013).
    [CrossRef] [PubMed]
  19. D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
    [CrossRef]

2013 (3)

2012 (1)

2011 (4)

2010 (1)

2009 (4)

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
[CrossRef] [PubMed]

K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
[CrossRef] [PubMed]

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
[CrossRef]

2007 (1)

2002 (1)

1992 (1)

K. Hattori, T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[CrossRef]

1989 (1)

1968 (1)

D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
[CrossRef]

Agrež, V.

V. Agrež, F. Bammer, B. Podobnik, R. Petkovšek, “Influence of the retardation of the multiplexing element in a dual channel Q-switched laser,” Appl. Phys. B 112(1), 73–81 (2013).
[CrossRef]

V. Agrež, R. Petkovšek, “Gain-switched Yb-doped fiber laser for microprocessing,” Appl. Opt. 52(13), 3066–3072 (2013).
[CrossRef] [PubMed]

Alkeskjold, T. T.

Bammer, F.

V. Agrež, F. Bammer, B. Podobnik, R. Petkovšek, “Influence of the retardation of the multiplexing element in a dual channel Q-switched laser,” Appl. Phys. B 112(1), 73–81 (2013).
[CrossRef]

R. Petkovšek, J. Saby, F. Salin, T. Schumi, F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20(7), 7415–7421 (2012).
[CrossRef] [PubMed]

Bang, O.

Bennetts, S.

Blau, P.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Broeng, J.

Carlson, D. G.

D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
[CrossRef]

Cocquelin, B.

Dickinson, B. C.

Fang, Y.-C.

Fitzau, O.

Geiger, J.

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
[CrossRef]

Giesberts, M.

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
[CrossRef] [PubMed]

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
[CrossRef]

Glick, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Hakimi, F.

Hansen, K. P.

Hattori, K.

K. Hattori, T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[CrossRef]

Haub, J.

Hemming, A.

Hoffmann, H. D.

Hoffmann, H.-D.

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
[CrossRef]

Huang, H.-M.

Jackson, S. D.

Jiang, M.

Jungbluth, B.

Katz, M.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

King, T. A.

Kitagawa, T.

K. Hattori, T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[CrossRef]

Lægsgaard, J.

Lancaster, D. G.

Larsen, C.

Laurell, F.

Laurila, M.

Lebiush, E.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Li, F.

Y. Tang, F. Li, J. Xu, “High peak-power gain-switched Tm doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[CrossRef]

Lin, S.-T.

Malmström, M.

Margulis, W.

Mattsson, K. E.

Munch, J.

Nafcha, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Noordegraaf, D.

Nyga, S.

Ottaway, D.

Petkovšek, R.

Po, H.

Podobnik, B.

V. Agrež, F. Bammer, B. Podobnik, R. Petkovšek, “Influence of the retardation of the multiplexing element in a dual channel Q-switched laser,” Appl. Phys. B 112(1), 73–81 (2013).
[CrossRef]

Saby, J.

Salin, F.

Schumi, T.

Scolari, L.

Simakov, N.

Sintov, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Skovgaard, P. M. W.

Snitzer, E.

Tang, Y.

Y. Tang, F. Li, J. Xu, “High peak-power gain-switched Tm doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[CrossRef]

Tarasenko, O.

Tayebati, P.

Traub, M.

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
[CrossRef]

Tsai, T.-Y.

Tsao, H.-X.

Tumminelli, R.

Wu, K. S.

Xu, J.

Y. Tang, F. Li, J. Xu, “High peak-power gain-switched Tm doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[CrossRef]

Yu, Z.

Zenteno, L. A.

Appl. Opt. (2)

Appl. Phys. B (1)

V. Agrež, F. Bammer, B. Podobnik, R. Petkovšek, “Influence of the retardation of the multiplexing element in a dual channel Q-switched laser,” Appl. Phys. B 112(1), 73–81 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Hattori, T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4(9), 973–975 (1992).
[CrossRef]

Y. Tang, F. Li, J. Xu, “High peak-power gain-switched Tm doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[CrossRef]

J. Appl. Phys. (1)

D. G. Carlson, “Dynamics of a repetitively pump-pulsed Nd:YAG Laser,” J. Appl. Phys. 39(9), 4369–4374 (1968).
[CrossRef]

Opt. Express (8)

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21(10), 12302–12308 (2013).
[CrossRef] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
[CrossRef] [PubMed]

K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
[CrossRef] [PubMed]

T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18(23), 23523–23528 (2010).
[CrossRef] [PubMed]

M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
[CrossRef] [PubMed]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
[CrossRef] [PubMed]

N. Simakov, A. Hemming, S. Bennetts, J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[CrossRef] [PubMed]

R. Petkovšek, J. Saby, F. Salin, T. Schumi, F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20(7), 7415–7421 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

M. Giesberts, J. Geiger, M. Traub, H.-D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 71952P (2009).
[CrossRef]

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, “A frequency doubled gain switched Yb3+-doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Other (1)

S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser,” in Fiber Lasers III, (SPIE, 2006), 61020O61021–61020O61025.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of (a) experimental setup built around (b) microstructured Yb-doped fiber; PD: photo diode, BS: beam sampler, CL: collimating lens, 2rcr cladding diameter.

Fig. 2
Fig. 2

The comparison of measured and modeled results for pump and laser power as a function of time for a 120 cm long fiber at 1030 nm wavelength.

Fig. 3
Fig. 3

Measured (a) laser pulse duration and (b) peak power at three different fiber lengths at a laser wavelength of 1030 nm. Solid curves represent the expected trends.

Fig. 4
Fig. 4

Measured and model results of (a) laser pulse width and (b) peak power shown for two laser wavelengths in a 53 cm long fiber. (c) The measured pulse for the pump pulse power of 330 W.

Fig. 5
Fig. 5

On (a) is shown measured beam radius of a focused beam along the focusing direction. The red dotted line indicates the theoretical expression for a diffraction limited beam. The beam profile is shown in (b).

Fig. 6
Fig. 6

Pulse train of 100 sequential gain-switched laser pulses from output pulse peak powers of (a) 0.96 kW and (b) 1.9 kW. The standard deviation of the pulse energy was 1.0% and 1.1% for (a) and (b), respectively. For comparison, every twentieth pulse is shown for each pulse train ((c),(d)).

Tables (1)

Tables Icon

Table 1 Laser system parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N i t = Γ σ 21 c V i ( N i N tr )( ϕ i + + ϕ i ) N i τ 21 + w i (t, ϕ m ),
ϕ i ± t = Γ σ 21 c V i ( N i N tr )ϕ i ± ϕ i ± τ c + β 2 N i τ 21 + ϕ i1 ± τ c .
ϕ 1 + = R 1 ϕ 1 , ϕ m = R 2 ϕ m + .
t Lp P p 1/2 ,
P Lp P p .

Metrics