Abstract

In this paper, the optical properties of a plasmonic nanoantenna array have been investigated. The proposed plasmonic structure presents omnidirectional resonance properties, such as omnidirectional reflection dip and omnidirectional emission peak. In addition, the reflection and emission of the plasmonic nanoantenna array with various metal/insulator/metal cavity thicknesses are theoretically and experimentally investigated. The simulation reveals a fair agreement with the experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  3. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  4. L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
    [CrossRef] [PubMed]
  5. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
    [CrossRef] [PubMed]
  6. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  7. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
    [CrossRef] [PubMed]
  8. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  9. J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
    [CrossRef]
  10. J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [CrossRef]
  11. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
    [CrossRef]
  12. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  13. D. L. C. Chan, M. Soljacić, J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [CrossRef] [PubMed]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  15. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
    [CrossRef]
  16. Y. Ueba, J. Takahara, T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011).
    [CrossRef] [PubMed]
  17. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
    [CrossRef]
  18. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
    [CrossRef]
  19. G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
    [CrossRef]
  20. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
    [CrossRef] [PubMed]
  21. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
    [CrossRef] [PubMed]
  22. C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
    [CrossRef]
  23. S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord,“Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
    [CrossRef]
  28. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  29. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
    [CrossRef]

2013

C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
[CrossRef]

2012

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[CrossRef]

2011

Y. Ueba, J. Takahara, T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011).
[CrossRef] [PubMed]

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

2010

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009

2008

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

2007

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

2006

D. L. C. Chan, M. Soljacić, J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

2004

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

2003

2002

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

2000

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

1999

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

1997

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

1995

Abbas, M. N.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Carminati, R.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Cattoni, A.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Chan, D. L. C.

Chang, H. C.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chang, P. E.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chang, Y. C.

Chang, Y. T.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Chen, C. H.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chen, C. Y.

Chen, H. H.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Chen, J.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Chen, Y.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Chuang, T. H.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Collin, S.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Dahan, N.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Decanini, D.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

El-Kady, I.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Gaylord, T. K.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Ghenuche, P.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Grann, E. B.

Greffet, J. J.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Haghiri-Gosnet, A. M.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Halas, N. J.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Hasman, E.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Herminghaus, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Ho, K. M.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Hsiao, H. H.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Huang, S. Y.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

Hutter, E.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Jiang, Y. W.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kleiner, V.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

Knoll, W.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Kreiter, M.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Le Gall, J.

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Lee, S. C.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Li, Z. Y.

Lin, C. I.

C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Marquier, F.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Meng, C. Y.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Mittleman, D. M.

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Mittler-Neher, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Moharam, M. G.

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Nagatsuma, T.

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Olivier, M.

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Oster, J.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Pelouard, J. L.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Pommet, D. A.

Sambles, R.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Shih, M. H.

Soljacic, M.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Takahara, J.

Taubner, T.

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Tsai, D. P.

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Ueba, Y.

Wang, C. M.

Wang, K.

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Ye, Y. H.

Yu, C. J.

C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Adv. Mater.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Appl. Phys. Lett.

G. Biener, N. Dahan, A. Niv, V. Kleiner, E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Cancer Lett.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

IEEE Photonics Technol. Lett.

S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett. 24, 833–835 (2012).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nano Lett.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[CrossRef] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Nature

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Opt. Commun.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. I. Lin, T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

J. Le Gall, M. Olivier, J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Plasmonics

C. M. Wang, C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics 8(2), 385–390 (2013).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the plasmonic nanoantenna array. The thickness of the SiO2 layer is denoted by tw. The thickness, width and period of the Ag nanoantenna are denoted by tAg, wAg, and Λg, respectively.

Fig. 2
Fig. 2

(a) Reflection spectra of the nanoantenna array as a function of SiO2 thickness, tw, measured under TM polarization with an oblique incident angle of 15°. (b) Resonant wavelength for the fundamental mode of the MIM cavity as a function of SiO2 thickness, tw. The other geometric parameters are Λg = 3μm, tAg = 0.1μm and wAg = 1.5μm. (c) Hy field distribution for λ = 4.8μm and tw = 20nm (●). (d) Hy field distribution for λ = 7.5μm and tw = 20nm (■). (e) Hy field distribution for λ = 11.6μm and tw = 20nm (▲).

Fig. 3
Fig. 3

Resonant wavelength for the fundamental mode of the MIM cavity for an oblique incident angle ranging from 15° to 65°. The black solid line represents the SPP dispersion at the Ag/Air interface. The geometric parameters of the nanoantenna are Λg = 3μm, tAg = 0.1μm and WAg = 1.5μm.

Fig. 4
Fig. 4

(a) Plasmonic enhanced emissivity for different MIM cavity thickness, tw. The heating temperature of the plasmonic nanoantenna is 250°C. (b) Relation between the resonant emissivity and Hy field enhancement of the fundamental mode.

Metrics