Abstract

Recently, the first microfluidic optomechanical device was demonstrated, capable of operating with non-solid states of matter (viscous fluids, bioanalytes). These devices exhibit optomechanical oscillation in both the 10–20 MHz and 10–12 GHz regimes, driven by radiation pressure (RP) and stimulated Brillouin scattering (SBS) respectively. In this work, we experimentally investigate aerostatic tuning of these hollow-shell oscillators, enabled by geometry, stress, and temperature effects. We also demonstrate for the first time the simultaneous actuation of RP-induced breathing mechanical modes and SBS-induced whispering gallery acoustic modes, through a single pump laser. Our result is a step towards completely self-referenced optomechanical sensor technologies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993).
    [CrossRef]
  2. C. Metzger, K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
    [CrossRef] [PubMed]
  3. C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
    [CrossRef] [PubMed]
  4. T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [CrossRef] [PubMed]
  5. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
    [CrossRef] [PubMed]
  6. S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
    [CrossRef] [PubMed]
  7. D. Kleckner, D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
    [CrossRef] [PubMed]
  8. J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
    [CrossRef] [PubMed]
  9. J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [CrossRef] [PubMed]
  10. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
    [CrossRef]
  11. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
    [CrossRef] [PubMed]
  12. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  13. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
    [CrossRef] [PubMed]
  14. Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef] [PubMed]
  15. I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [CrossRef]
  16. M. Tomes, T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [CrossRef] [PubMed]
  17. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
    [CrossRef] [PubMed]
  18. G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
    [CrossRef] [PubMed]
  19. G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
    [CrossRef]
  20. P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
  21. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [CrossRef] [PubMed]
  22. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [CrossRef] [PubMed]
  23. C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
    [CrossRef]
  24. C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
    [CrossRef] [PubMed]
  25. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [CrossRef]
  26. D. N. Hutchison, S. A. Bhave, “Z-axis optomechanical accelerometer,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, New York, 2012), pp. 615–619.
  27. F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
    [CrossRef]
  28. F. Liu, M. Hossein-Zadeh, “On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing,” Opt. Commun. 294, 338–343 (2013).
    [CrossRef]
  29. E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
    [CrossRef] [PubMed]
  30. Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).
  31. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.
  32. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
    [CrossRef]
  33. J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
    [CrossRef]
  34. G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).
  35. A. Watkins, J. Ward, Y. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011).
    [CrossRef] [PubMed]
  36. R. Henze, T. Seifert, J. Ward, O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
    [CrossRef] [PubMed]
  37. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
    [CrossRef] [PubMed]
  38. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20, 8535–8542 (2012).
    [CrossRef] [PubMed]
  39. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, S. Nic Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
    [CrossRef] [PubMed]
  40. K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).
  41. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
    [CrossRef]
  42. M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
    [CrossRef]
  43. J. C. Knight, G. Cheung, F. Jacques, T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [CrossRef] [PubMed]
  44. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [CrossRef] [PubMed]
  45. G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
    [CrossRef]
  46. H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005).
    [CrossRef] [PubMed]
  47. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [CrossRef] [PubMed]
  48. R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
    [CrossRef]
  49. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
    [CrossRef]
  50. R. Boyd, “Stimulated Brillouin and stimulated Rayleigh scattering,” in Nonlinear Optics (Academic, 1992).
  51. G. Bahl, T. Carmon, “Brillouin optomechanics” (2013), arxiv.org:1309.2828.
  52. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [CrossRef] [PubMed]
  53. S. Timoshenko, D. H. Young, W. Weaver, “Beams of elastic bodies,” in “Vibration Problems in Engineering” (John Wiley, 1974), pp. 455–477.
  54. Comsol Group, “COMSOL Multiphysics,” http://www.comsol.com/ .
  55. P. Chidamparam, A. W. Leissa, “Vibrations of planar curved beams, rings, and arches,” Appl. Mech. Rev. 46, 467–483 (1993).
    [CrossRef]
  56. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (John Wiley, 1997).
  57. R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
    [CrossRef]
  58. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
    [CrossRef]
  59. T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
    [CrossRef] [PubMed]
  60. L. A. DeLorenzo, K. C. Schwab, “Superfluid optomechanics: Coupling of a superfluid to a superconducting condensate” (2013),arXiv.org:1308.2164.
  61. J. Vig, “Dual-mode oscillators for clocks and sensors,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, New York, 1999), pp. 859–868.
  62. J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
    [CrossRef]

2013 (6)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[CrossRef]

F. Liu, M. Hossein-Zadeh, “On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing,” Opt. Commun. 294, 338–343 (2013).
[CrossRef]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[CrossRef]

M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
[CrossRef]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

2012 (9)

G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[CrossRef]

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20, 8535–8542 (2012).
[CrossRef] [PubMed]

R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, S. Nic Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
[CrossRef] [PubMed]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[CrossRef] [PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[CrossRef] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[CrossRef]

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

2011 (7)

A. Watkins, J. Ward, Y. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011).
[CrossRef] [PubMed]

R. Henze, T. Seifert, J. Ward, O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
[CrossRef] [PubMed]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
[CrossRef] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[CrossRef] [PubMed]

2010 (2)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

2009 (5)

J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[CrossRef]

M. Tomes, T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[CrossRef] [PubMed]

2008 (4)

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

2007 (3)

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[CrossRef] [PubMed]

2006 (3)

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

D. Kleckner, D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

2005 (4)

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

2004 (2)

1997 (1)

1993 (2)

J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993).
[CrossRef]

P. Chidamparam, A. W. Leissa, “Vibrations of planar curved beams, rings, and arches,” Appl. Mech. Rev. 46, 467–483 (1993).
[CrossRef]

1965 (1)

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

1964 (1)

R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Agarwal, M.

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Aksyuk, V.

Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).

Alegre, T. M.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Arcizet, O.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Aspelmeyer, M.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[CrossRef]

G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[CrossRef]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[CrossRef] [PubMed]

G. Bahl, T. Carmon, “Brillouin optomechanics” (2013), arxiv.org:1309.2828.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

Bao, M. H.

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Bauerle, D.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Benson, O.

Bhave, S. A.

D. N. Hutchison, S. A. Bhave, “Z-axis optomechanical accelerometer,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, New York, 2012), pp. 615–619.

Birks, T. A.

Blaser, F.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Bloembergen, N.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

Bohm, H.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Bouwmeester, D.

D. Kleckner, D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

Boyd, R.

R. Boyd, “Stimulated Brillouin and stimulated Rayleigh scattering,” in Nonlinear Optics (Academic, 1992).

Briant, T.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Cai, H.

Camacho, R.

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Capasso, F.

Carmon, T.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[CrossRef]

G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[CrossRef]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[CrossRef] [PubMed]

M. Tomes, T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[CrossRef] [PubMed]

G. Bahl, T. Carmon, “Brillouin optomechanics” (2013), arxiv.org:1309.2828.

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

Chan, J.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Chandorkar, S. A.

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Cheung, G.

Chiao, R.

R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Chidamparam, P.

P. Chidamparam, A. W. Leissa, “Vibrations of planar curved beams, rings, and arches,” Appl. Mech. Rev. 46, 467–483 (1993).
[CrossRef]

Cohadon, P.-F.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Coppola, S.

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Cupps, J. M.

Davids, P.

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Deleglise, S.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

DeLorenzo, L. A.

L. A. DeLorenzo, K. C. Schwab, “Superfluid optomechanics: Coupling of a superfluid to a superconducting condensate” (2013),arXiv.org:1308.2164.

Ding, M.

M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
[CrossRef]

Dong, C.

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[CrossRef]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[CrossRef] [PubMed]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[CrossRef]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[CrossRef] [PubMed]

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

Favero, I.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

Ferraro, P.

Finizio, A.

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[CrossRef]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[CrossRef] [PubMed]

Gavartin, E.

E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[CrossRef] [PubMed]

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Gigan, S.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Girvin, S.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Grilli, S.

Gröblacher, S.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[CrossRef]

Han, K.

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

Harris, J.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Heidmann, A.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Henze, R.

Hertzberg, J.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Hill, J. T.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Hopcroft, M. A.

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Hossein-Zadeh, M.

F. Liu, M. Hossein-Zadeh, “On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing,” Opt. Commun. 294, 338–343 (2013).
[CrossRef]

F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[CrossRef]

Huang, Y. P.

Hutchison, D. N.

D. N. Hutchison, S. A. Bhave, “Z-axis optomechanical accelerometer,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, New York, 2012), pp. 615–619.

Ibanescu, M.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

Jacques, F.

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Jayich, A.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Jha, C. M.

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Ji, X. M.

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Karrai, K.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

C. Metzger, K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

Kenny, T. W.

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Kim, B.

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Kim, J.

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

Kippenberg, T.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005).
[CrossRef] [PubMed]

Kippenberg, T. J.

E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[CrossRef] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

Kleckner, D.

D. Kleckner, D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

Knight, J. C.

Krause, A.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Kuzyk, M. C.

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[CrossRef]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[CrossRef] [PubMed]

Kwong, D. L.

Lacey, S.

Langer, G.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

Leissa, A. W.

P. Chidamparam, A. W. Leissa, “Vibrations of planar curved beams, rings, and arches,” Appl. Mech. Rev. 46, 467–483 (1993).
[CrossRef]

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Lipson, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Liu, A. Q.

Liu, F.

F. Liu, M. Hossein-Zadeh, “On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing,” Opt. Commun. 294, 338–343 (2013).
[CrossRef]

F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[CrossRef]

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

Liu, Y.

Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).

Loncar, M.

Lord, S. F.

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

Ludwig, M.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

Madugani, R.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Marquardt, F.

G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[CrossRef]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Marti, O.

J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993).
[CrossRef]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Melamud, R.

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

Mertz, J.

J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993).
[CrossRef]

Metzger, C.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

C. Metzger, K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

Miao, H.

Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).

Mlynek, J.

J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993).
[CrossRef]

Murugan, G. S.

M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
[CrossRef]

Nasir, M. N. M.

M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
[CrossRef]

Neuenhahn, C.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

Nic Chormaic, S.

Nikogosyan, D. N.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (John Wiley, 1997).

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Ortlieb, A.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

Oxborrow, M.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Paternostro, M.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Pinard, M.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Povinelli, M. L.

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Rakich, P.

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Rakich, P. T.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Reddy, K.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

Reinke, C.

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Riordan, J. D.

Riviere, R.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005).
[CrossRef] [PubMed]

Rosenberg, J.

J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Safavi-Naeini, A. H.

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Salvia, J. C.

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

Schliesser, A.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Schwab, K.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Schwab, K. C.

L. A. DeLorenzo, K. C. Schwab, “Superfluid optomechanics: Coupling of a superfluid to a superconducting condensate” (2013),arXiv.org:1308.2164.

Schwefel, H. G. L.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

Seidel, D.

Seifert, T.

Shen, Y. R.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

Shin, H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Shopova, S. I.

Smythe, E. J.

Srinivasan, K.

Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

Stoicheff, B.

R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Stone, A. D.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

Strekalov, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

Sumetsky, M.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

Sun, Y.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[CrossRef] [PubMed]

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Thompson, J.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Timoshenko, S.

S. Timoshenko, D. H. Young, W. Weaver, “Beams of elastic bodies,” in “Vibration Problems in Engineering” (John Wiley, 1974), pp. 455–477.

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[CrossRef]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[CrossRef] [PubMed]

M. Tomes, T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[CrossRef] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

Townes, C.

R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Tsai, J. M.

Vahala, K.

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005).
[CrossRef] [PubMed]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[CrossRef] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[CrossRef] [PubMed]

Vespini, V.

Vig, J.

J. Vig, “Dual-mode oscillators for clocks and sensors,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, New York, 1999), pp. 859–868.

Wang, H.

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[CrossRef]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[CrossRef] [PubMed]

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Ward, J.

Ward, J. M.

Watkins, A.

Weaver, W.

S. Timoshenko, D. H. Young, W. Weaver, “Beams of elastic bodies,” in “Vibration Problems in Engineering” (John Wiley, 1974), pp. 455–477.

Weis, S.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

White, I. M.

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Wu, Y.

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Yang, L.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[CrossRef] [PubMed]

Yang, Y.

Young, D. H.

S. Timoshenko, D. H. Young, W. Weaver, “Beams of elastic bodies,” in “Vibration Problems in Engineering” (John Wiley, 1974), pp. 455–477.

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[CrossRef] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).

Zeilinger, A.

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Zervas, M. N.

M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
[CrossRef]

Zhang, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

Zhang, P.

Zhao, X.

Zhou, J.

Zwickl, B.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Appl. Mech. Rev. (1)

P. Chidamparam, A. W. Leissa, “Vibrations of planar curved beams, rings, and arches,” Appl. Mech. Rev. 46, 467–483 (1993).
[CrossRef]

Appl. Phys. Lett. (3)

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[CrossRef]

R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007).
[CrossRef]

J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993).
[CrossRef]

IEEE Sensors J. (1)

F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[CrossRef]

J. Microelectromech. Syst. (1)

J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010).
[CrossRef]

Nat. Commun. (3)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[CrossRef] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[CrossRef] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Nat. Phys. (1)

G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[CrossRef]

Nature (8)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

C. Metzger, K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

D. Kleckner, D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

New J. Phys. (1)

G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[CrossRef]

Opt. Commun. (1)

F. Liu, M. Hossein-Zadeh, “On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing,” Opt. Commun. 294, 338–343 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. (1)

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

Phys. Rev. A (3)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007).
[CrossRef]

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[CrossRef]

Phys. Rev. Lett. (9)

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[CrossRef]

M. Tomes, T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008).
[CrossRef] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[CrossRef]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Phys. Rev. X (1)

P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Proc. SPIE LASE (1)

M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013).
[CrossRef]

Science (2)

C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[CrossRef] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Other (12)

D. N. Hutchison, S. A. Bhave, “Z-axis optomechanical accelerometer,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, New York, 2012), pp. 615–619.

K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).

Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.

R. Boyd, “Stimulated Brillouin and stimulated Rayleigh scattering,” in Nonlinear Optics (Academic, 1992).

G. Bahl, T. Carmon, “Brillouin optomechanics” (2013), arxiv.org:1309.2828.

S. Timoshenko, D. H. Young, W. Weaver, “Beams of elastic bodies,” in “Vibration Problems in Engineering” (John Wiley, 1974), pp. 455–477.

Comsol Group, “COMSOL Multiphysics,” http://www.comsol.com/ .

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (John Wiley, 1997).

L. A. DeLorenzo, K. C. Schwab, “Superfluid optomechanics: Coupling of a superfluid to a superconducting condensate” (2013),arXiv.org:1308.2164.

J. Vig, “Dual-mode oscillators for clocks and sensors,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, New York, 1999), pp. 859–868.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental overview (a) Colorized scanning electron micrograph of a hollow-core fused-silica optomechanical resonator with radius modulated by design. Resonator wall thickness can be varied as needed. (b) 1.5 μm light is coupled to the ultra-high-Q optical modes by means of a tapered fiber placed in contact to minimize vibrational issues. The optical pump and the scattered light are made to interfere on high speed photodetectors in both forward and backward directions, thus generating beat notes at the mechanical vibration frequency. (c) Radiation pressure (RP) drives “breathing mode” optomechanical oscillators (OMOs) that generate both upper and lower sidebands of the input optical signal. (d) Stimulated Brillouin scattering (SBS) excites traveling whispering gallery acoustic modes (WGAMs) that generate only a single Stokes shifted sideband in the backscattering direction.

Fig. 2
Fig. 2

Aerostatic tuning mechanisms: Increasing the internal aerostatic pressure (Pint) causes geometry change (radius, dR) and increases the stress (S) in the resonator shell, both of which cause the mechanical frequency to shift. Geometry and stress effects also modify the optical modes, which changes the laser power coupling and thus energy dissipation in the resonator, modifying the device temperature. Since the mechanical modulii of a material are temperature-dependent, this also induces a change in the mechanical frequency of the OMO.

Fig. 3
Fig. 3

Aerostatic tuning of a 13.07 MHz RP-driven OMO. We characterize aerostatic tuning of the OMO using a fixed-frequency pump laser, observing a negative pressure coefficient of frequency (PCf) caused by lowering of the temperature of the device due to the optical mode shift. When feedback control is applied on the laser (to track the shifting optical mode) the amount of power coupling into the device does not change. Thus the temperature effect is eliminated and the net positive PCf indicates that the OMO frequency is dominated by the increasing stress in the resonator shell.

Fig. 4
Fig. 4

Aerostatic tuning of 11.2 GHz SBS-driven OMOs: Both (a) negative and (b) positive PCf are observed in multiple trials, exhibiting large absolute pressure sensitivity. The red line is a linear fit to the data.

Fig. 5
Fig. 5

RP and SBS oscillations can be simultaneously actuated on a single device as evidenced in this spectrogram. Experimentally, the Ω RP = 11 GHz oscillation shows multiple sidebands separated by Ω RP = 16 MHz. As internal pressure is changed from 1 atm (∼101 kPa) to 5 atm (∼500 kPa), both the 11 GHz OMO and the 16 MHz OMO are tuned. CF, center frequency.

Fig. 6
Fig. 6

Aerostatic tuning experiment with simultaneous RP (15.2 MHz) and SBS oscillation (11 GHz) on a device. Fractional mechanical frequency shift is recorded in parts-per-million (ppm) for convenient comparison since the SBS OMO absolute sensitivity is four order-of-magnitude higher.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ω M = 1 2 π R E ρ

Metrics