## Abstract

The interplay between the stochastic intensity fluctuation of Raman pump laser and cross-phase modulation (XPM) effect in transmission optical fiber leads to additional phase noise, namely, relative phase noise (RPN) of signal in multi-level modulated coherent optical communication system. Both theoretical analysis and quantitative simulation have been performed to investigate the characteristics and impact of RPN. Being low-pass in nature, RPN is different from XPM induced phase noise in PSK/OOK hybrid system, and has not been considered yet. The noise power of RPN can accumulate incoherently along transmission links. With a proper signal model, we study the impact of RPN to the coherent optical communication system through Monte Carlo simulation. RPN will cause more cycle slips in Viterbi-and-Viterbi (V-V) phase estimation (PE), and the quantitative analysis of cycle slip probability is carried out. When using sliding window V-V without any optimization, the Q factor penalty of RPN on DQPSK signal can be as large as around 5 dB in strong RPN condition. However, it can be reduced by over 3 dB when using an optimal block size or optimal averaging weights.

© 2014 Optical Society of America

Full Article | PDF Article