Abstract

We show super-Nyquist-WDM transmission technique, where optical signals with duobinary-pulse shaping can be wavelength-multiplexed with frequency spacing of below baudrate. Duobinary-pulse shaping can reduce the signal bandwidth to be a half of baudrate while controlling inter-symbol interference can be compensated by the maximum likelihood sequence estimation in a receiver. First, we experimentally evaluate crosstalk characteristics as a function of channel spacing between the dual-channel DP-QPSK signals with duobinary-pulse shaping. As a result, the crosstalk penalty can be almost negligible as far as the ratio of baudrate to frequency spacing is maintained to be less than 1.20. Next, we demonstrate 140.7-Tbit/s, 7,326-km transmission of 7 × 201-channel 25-GHz-spaced super-Nyquist-WDM 100-Gbit/s optical signals using seven-core fiber and full C-band seven-core EDFAs. To the best of our knowledge, this is one of the first reports of high-capacity transmission experiments with capacity-distance product in excess of 1 Exabit/s·km.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s coherent PDM-QPSK transmission over 7,200km,” ECOC2009, PDP2.5 (2009).
  2. M. Mazurczyk, D. G. Foursa, H. G. Batshon, H. Zhang, C. R. Davidson, J. -X. Cai, A. Pilipetskii, G. Mohs and N. S. Bergano, “30 Tb/s transmission over 6,630 km using 16QAM signals at 6.1 bits/s/Hz spectral efficiency,” ECOC2012, Th.3.C.2 (2012).
  3. D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
    [CrossRef] [PubMed]
  4. M. Salsi, A. Ghazisaeidi, P. Tran, R. R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tbit/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” OECC2013, PD3–5 (2013).
  5. M. Salsi, R. R. Muller, J. Renaudier, P. Tran, L. Schmalen, A. Ghazisaeid, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “38.75 Tb/s transmission experiment over transoceanic distance,” ECOC2013, PD3. E2 (2013).
  6. D. G. Foursa, H. G. Batshon, H. Zhang, M. Mazurczyk, J.-X. Cai, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, “44.1 Tb/s transmission over 9,100 km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency,” ECOC2013, PD3. E (2013).
  7. K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express 21(15), 18053–18060 (2013).
    [CrossRef] [PubMed]
  8. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [CrossRef]
  9. J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” OFC2010, PDPB10 (2009).
  10. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “1.03-Exabit/s×km super-Nyquist-WDM transmission over 7,326-km seven-core fiber,” ECOC2013, PD3 (2013).
  11. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” ECOC2013, PD3. E (2013).
  12. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012).
  13. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” ECOC2011, Th.13.C.4 (2011).
  14. Y. Mori, Z. Chao, and K. Kikuchi, “Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM signals,” OFC2012, OTh4C.4 (2012).

2013

2012

Andrekson, P. A.

Djordjevic, I. B.

Eriksson, T.

Huang, M.-F.

Huang, Y.-K.

Igarashi, K.

Imamura, K.

Karlsson, M.

Li, J.

Maeda, K.

Mateo, E.

Morita, I.

Qian, D.

Saito, T.

Sugizaki, R.

Sumita, S.

Suzuki, M.

Tadakuma, M.

Takahashi, H.

Takeshima, K.

Tipsuwannakul, E.

Tsuchida, Y.

Tsuritani, T.

Watanabe, K.

Yaman, F.

Zhang, S.

Zhang, Y.

J. Lightwave Technol.

Opt. Express

Other

M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s coherent PDM-QPSK transmission over 7,200km,” ECOC2009, PDP2.5 (2009).

M. Mazurczyk, D. G. Foursa, H. G. Batshon, H. Zhang, C. R. Davidson, J. -X. Cai, A. Pilipetskii, G. Mohs and N. S. Bergano, “30 Tb/s transmission over 6,630 km using 16QAM signals at 6.1 bits/s/Hz spectral efficiency,” ECOC2012, Th.3.C.2 (2012).

M. Salsi, A. Ghazisaeidi, P. Tran, R. R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tbit/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” OECC2013, PD3–5 (2013).

M. Salsi, R. R. Muller, J. Renaudier, P. Tran, L. Schmalen, A. Ghazisaeid, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “38.75 Tb/s transmission experiment over transoceanic distance,” ECOC2013, PD3. E2 (2013).

D. G. Foursa, H. G. Batshon, H. Zhang, M. Mazurczyk, J.-X. Cai, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, “44.1 Tb/s transmission over 9,100 km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency,” ECOC2013, PD3. E (2013).

J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” OFC2010, PDPB10 (2009).

K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “1.03-Exabit/s×km super-Nyquist-WDM transmission over 7,326-km seven-core fiber,” ECOC2013, PD3 (2013).

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” ECOC2013, PD3. E (2013).

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012).

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” ECOC2011, Th.13.C.4 (2011).

Y. Mori, Z. Chao, and K. Kikuchi, “Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM signals,” OFC2012, OTh4C.4 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) DSP at transmitter, (b) model of duobinary-pulse shaping, (c) impulse response and (d) power spectrum of duobinary-pulse shaping.

Fig. 2
Fig. 2

(a) DSP at receiver, (b) trellis for duobinary signals.

Fig. 3
Fig. 3

(a) Spectral arrangement of dual-channel duobinary-pulse-shaped DP-QPSK signals. (b) Measured BERs of single-channel (SC) duobinary-pulse-shaped signals with and without MLSE, (c) those of dual-channel duobinary-pulse-shaped signals with frequency spacing of 18GHz, 15GHz and 12GHz, and (d) those of dual-channel duobinary-pulse-shaped and Nyquist-pulse-shaped signals with frequency spacing of 15 GHz.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Optical spectra of 30-Gbaud duobinary-pulse-shaped and Nyquist-pulse-shaped DP-QPSK signals. Solid lines: WDM cases. Dashed lines: single-channel cases.

Fig. 6
Fig. 6

Measured bit-error rates of 30-Gbaud duobinary-pulse-shaped and Nyquist-pulse-shaped DP-QPSK signals in the single-channel (SC) and WDM cases.

Fig. 7
Fig. 7

Calculated launched power required for an OSNR of 15 dB and 16 dB as a function of transmission distance.

Fig. 8
Fig. 8

Measured Q factors and OSNRs as a function of transmission distance.

Fig. 9
Fig. 9

Optical spectra before and after 7,326-km transmission.

Fig. 10
Fig. 10

Measured Q factors of all 201 WDM channels of seven cores of MCF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h duo ( t ) = 1 + δ ( t 1 / B ) 2 sin c ( π B t ) ,
H duo ( f ) = 1 + exp ( j 2 π f / B ) 2 rect ( f / B ) = exp ( j π f / B ) cos ( π f / B ) rect ( f / B ) ,

Metrics