Abstract

We present a method for the generation of correlated photon pairs in desired orbital-angular-momentum states using a non-linear silica ring fiber and spontaneous parametric down-conversion. Photon-pair emission under quasi-phase-matching conditions with quantum conversion efficiency 6 × 10−11 is found in a 1-m long fiber with a thermally induced χ(2) nonlinearity in a ring-shaped core.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flux enhancement of photons entangled in orbital angular momentum

Silvana Palacios, R. de J. León-Montiel, Martin Hendrych, Alejandra Valencia, and Juan P. Torres
Opt. Express 19(15) 14108-14120 (2011)

Orbital angular momentum of entangled counterpropagating photons

Juan P. Torres, Clara I. Osorio, and Lluis Torner
Opt. Lett. 29(16) 1939-1941 (2004)

Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals

L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu
Opt. Express 23(2) 1203-1212 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, S. M. Barnett, and M. J. Padgett, Optical AngularMomentum (CRC Press, 2003).
  2. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
    [Crossref]
  3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref] [PubMed]
  4. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics 3, 305–310 (2007).
    [Crossref]
  5. G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012).
    [Crossref] [PubMed]
  6. M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics 5, 343–348 (2011).
    [Crossref]
  7. P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
    [Crossref]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref] [PubMed]
  9. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
    [Crossref]
  10. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
    [Crossref] [PubMed]
  11. J. Svozilík, J. Peřina, and J. P. Torres, “High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. A 86, 052318 (2012).
    [Crossref]
  12. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  13. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
    [Crossref] [PubMed]
  14. J. Fan, A. Migdall, and L. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 3368–3370 (2005).
    [Crossref]
  15. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [Crossref] [PubMed]
  16. E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Measurement of χ(2) symmetry in a poled fiber,” Opt. Lett. 35, 1530–1532 (2010).
    [Crossref] [PubMed]
  17. G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
    [Crossref]
  18. K. P. Huy, A. T. Nguyen, E. Brainis, M. Haelterman, P. Emplit, C. Corbari, A. Canagasabey, P. G. Kazansky, O. Deparis, A. A. Fotiadi, P. Mégret, and S. Massar, “Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber,” Opt. Express 15, 4419–4426 (2007).
    [Crossref]
  19. E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
    [Crossref] [PubMed]
  20. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
    [Crossref]
  21. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34, 2483–2485 (2009).
    [Crossref] [PubMed]
  22. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  23. V. Brückner, Elements of Optical Networking (Springer, 2011).
    [Crossref]
  24. M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
    [Crossref]

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

2012 (5)

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012).
[Crossref] [PubMed]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

J. Svozilík, J. Peřina, and J. P. Torres, “High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. A 86, 052318 (2012).
[Crossref]

2011 (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics 5, 343–348 (2011).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (3)

K. P. Huy, A. T. Nguyen, E. Brainis, M. Haelterman, P. Emplit, C. Corbari, A. Canagasabey, P. G. Kazansky, O. Deparis, A. A. Fotiadi, P. Mégret, and S. Massar, “Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber,” Opt. Express 15, 4419–4426 (2007).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics 3, 305–310 (2007).
[Crossref]

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

2005 (3)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

1999 (1)

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

1991 (1)

Ahmed, N.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Alibart, O.

Allen, L.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical AngularMomentum (CRC Press, 2003).

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical AngularMomentum (CRC Press, 2003).

Birnbaum, K. M.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Bonfrate, G.

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics 5, 343–348 (2011).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Brainis, E.

Brückner, V.

V. Brückner, Elements of Optical Networking (Springer, 2011).
[Crossref]

Brueck, S. R. J.

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

Canagasabey, A.

Collins, M. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Corbari, C.

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

Deparis, O.

Dianov, E. M.

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Eggleton, B. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Emplit, P.

Erkmen, B. I.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Fan, J.

Fickler, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

Fotiadi, A. A.

Fulconis, J.

Gladyshev, A. V.

Guillemet, S.

Guo, G.-C.

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Haelterman, M.

He, J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Helt, L. G.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Measurement of χ(2) symmetry in a poled fiber,” Opt. Lett. 35, 1530–1532 (2010).
[Crossref] [PubMed]

Hermosa, N.

G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012).
[Crossref] [PubMed]

Hernandez, Y.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Huang, Y.-F.

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Huy, K. P.

Ibsen, M.

Kazansky, P.

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

Kazansky, P. G.

Kosolapov, A.

Krenn, M.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

Leach, J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Liegeois, F.

Liscidini, M.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Measurement of χ(2) symmetry in a poled fiber,” Opt. Lett. 35, 1530–1532 (2010).
[Crossref] [PubMed]

Liu, B.-H.

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Massar, S.

Mégret, P.

Migdall, A.

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics 3, 305–310 (2007).
[Crossref]

Mukherjee, N.

Myers, R. A.

Nguyen, A. T.

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics 5, 343–348 (2011).
[Crossref]

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical AngularMomentum (CRC Press, 2003).

Perina, J.

J. Svozilík, J. Peřina, and J. P. Torres, “High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. A 86, 052318 (2012).
[Crossref]

Plick, W. N.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

Pruneri, V.

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

Puentes, G.

G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012).
[Crossref] [PubMed]

Qian, L.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Measurement of χ(2) symmetry in a poled fiber,” Opt. Lett. 35, 1530–1532 (2010).
[Crossref] [PubMed]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Ramelow, S.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

Rarity, J.

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref] [PubMed]

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

Ren, X.-F.

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Rey, I. H.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Russell, P.

Schaeff, C.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

Shahnia, S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Sipe, J. E.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Measurement of χ(2) symmetry in a poled fiber,” Opt. Lett. 35, 1530–1532 (2010).
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Svozilík, J.

J. Svozilík, J. Peřina, and J. P. Torres, “High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. A 86, 052318 (2012).
[Crossref]

Tang, Z.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

Tapster, P.

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics 3, 305–310 (2007).
[Crossref]

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
[Crossref]

Torres, J. P.

G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012).
[Crossref] [PubMed]

J. Svozilík, J. Peřina, and J. P. Torres, “High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. A 86, 052318 (2012).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics 3, 305–310 (2007).
[Crossref]

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Vo, T. D.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Wadsworth, W.

Wang, L.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Xiong, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Yan, Y.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Yang, J.-Y.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Yashkov, M. V.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Zeilinger, A.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Zhang, L.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Zhang, P.

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Zhu, E. Y.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Measurement of χ(2) symmetry in a poled fiber,” Opt. Lett. 35, 1530–1532 (2010).
[Crossref] [PubMed]

Zou, X.-B.

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Appl. Phys. Lett. (1)

G. Bonfrate, V. Pruneri, P. Kazansky, P. Tapster, and J. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[Crossref]

IEEE Photonics J. (1)

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (oam) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
[Crossref]

Nat. Commun (1)

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, and B. J. Eggleton, (2013). Integrated spatial multiplexing of heralded single-photon sources, Nat. Commun.  4, 1–7 (2013).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Nature Photonics (1)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics 5, 343–348 (2011).
[Crossref]

Nature Physics (2)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities,” Nature Physics 7, 677–680 (2011).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics 3, 305–310 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (2)

J. Svozilík, J. Peřina, and J. P. Torres, “High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. A 86, 052318 (2012).
[Crossref]

P. Zhang, X.-F. Ren, X.-B. Zou, B.-H. Liu, Y.-F. Huang, and G.-C. Guo, “Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons,” Phys. Rev. A 75, 052310 (2007).
[Crossref]

Phys. Rev. Lett. (3)

G. Puentes, N. Hermosa, and J. P. Torres, “Weak measurements with orbital-angular-momentum pointer states,” Phys. Rev. Lett. 109, 040401 (2012).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
[Crossref] [PubMed]

Science (2)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Other (4)

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

V. Brückner, Elements of Optical Networking (Springer, 2011).
[Crossref]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical AngularMomentum (CRC Press, 2003).

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Sketch of the proposed silica fiber with a ring-shaped core utilizing quasi-phase-matching as a source of entangled photon pairs. The inset represents the transverse profile of refraction index ε r ( x , y ) at the pump wavelength λp0 = 0.775μm.
Fig. 2
Fig. 2 (a) Phase mismatch Δβ η p s η i as it depends on signal wavelength λs for three different combinations of eigenmodes fulfilling the OAM selection rule. The horizontal grey line indicates the maximum of spatial spectrum of χ(2) modulation expressed in −Δβ. The period of modulation Λ = 42.9 μm is chosen such that quasi-phase-matching occurs for λs0 = 1.5 μm and process HE 21 , R p HE 21 , R s + HE 11 , R i . (b) Signal photon-number density n η s as a function of signal wavelength λs for a 1 m-long fiber with period Λ = 42.9 μm. Different modes recognized in the signal field are indicated.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r 2 d 2 f ( r ) d r 2 + r d f ( r ) d r + r 2 [ ω 2 ε r c 2 β 2 n 2 r 2 ] f ( r ) = 0 , d 2 g ( θ ) d θ 2 + n 2 g ( θ ) = 0 ,
H ^ I ( t ) = 2 ε 0 S r d r d θ L 0 d z χ ( 2 ) ( z ) : E p ( + ) ( r , θ , z , t ) E ^ s ( ) ( r , θ , z , t ) E ^ i ( ) ( r , θ , z , t ) + h . c .
E p ( + ) ( r , θ , z , t ) = η p A p , η p d ω p p ( ω p ) e p , η p ( r , θ , ω p ) exp ( i [ β p , η p ( ω p ) z ω p t ] ) .
E ^ a ( ) ( r , θ , z , t ) = η a d ω a h ¯ ω a 4 π ε 0 n ¯ a c a ^ a , η a ( ω a ) e a , η a * ( r , θ , ω a ) exp ( i [ β a , η a ( ω a ) z ω a t ] ) ,
| ψ = i c η s , η i η p A p , η p d ω s d ω i ω s ω i n ¯ s n ¯ i p ( ω s + ω i ) × I η p , η s η i ( ω s , ω i ) a ^ s , η s ( ω s ) a ^ i , η i ( ω i ) | vac ;
I η p , η s η i ( ω s , ω i ) = S r d r d θ L 0 d z χ ( 2 ) ( z ) : e p , η p ( r , θ , ω s + ω i ) e s , η s * ( r , θ , ω s ) e i , η i * ( r , θ , ω i ) × exp [ i Δ β η p , η s η i ( ω s , ω i ) z ] ;
n η s ( ω s ) = η i d ω i ψ | a ^ s , η s ( ω s ) a ^ i , η i ( ω i ) a ^ s , η s ( ω s ) a ^ i , η i ( ω i ) | ψ .

Metrics