Abstract

We have isolated a single tooth from a fiber laser-based optical frequency comb for nonlinear spectroscopy and thereby directly referenced the comb. An 89 MHz erbium fiber laser frequency comb is directly stabilized to the P(23) (1539.43 nm) overtone transition of 12C2H2 inside a hollow-core photonic crystal fiber. To do this, a single comb tooth is isolated and amplified from 20 nW to 40 mW with sufficient fidelity to perform saturated absorption spectroscopy. The fractional stability of the comb, ~7 nm away from the stabilized tooth, is shown to be 6 × 10−12 at 100 ms gate time, which is over an order of magnitude better than that of a comb referenced to a GPS-disciplined Rb oscillator.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers

Kevin Knabe, Shun Wu, Jinkang Lim, Karl A. Tillman, Philip S. Light, Francois Couny, Natalie Wheeler, Rajesh Thapa, Andrew M. Jones, Jeffrey W. Nicholson, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Opt. Express 17(18) 16017-16026 (2009)

Enhancement of the performance of a fiber-based frequency comb by referencing to an acetylene-stabilized fiber laser

Thomas Talvard, Philip G. Westergaard, Michael V. DePalatis, Nicolai F. Mortensen, Michael Drewsen, Bjarke Gøth, and Jan Hald
Opt. Express 25(3) 2259-2269 (2017)

A phase-stabilized carbon nanotube fiber laser frequency comb

Jinkang Lim, Kevin Knabe, Karl A. Tillman, William Neely, Yishan Wang, Rodrigo Amezcua-Correa, François Couny, Philip S. Light, Fetah Benabid, Jonathan C. Knight, Kristan L. Corwin, Jeffrey W. Nicholson, and Brian R. Washburn
Opt. Express 17(16) 14115-14120 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
    [Crossref]
  2. Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
    [Crossref] [PubMed]
  3. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
    [Crossref] [PubMed]
  4. D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
    [Crossref]
  5. D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
    [Crossref]
  6. S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
    [Crossref]
  7. J. J. McFerran, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  8. M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
    [Crossref] [PubMed]
  9. D. Mandridis, C. Williams, I. Ozdur, and P. J. Delfyett, “Low noise chirped pulse mode-locked laser using an intra-cavity Fabry-Pérot etalon,” Opt. Express 19(10), 8994–8999 (2011).
    [Crossref] [PubMed]
  10. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
    [Crossref] [PubMed]
  11. D. Chao, M. Sander, G. Chang, J. Morse, J. Cox, G. Petrich, L. Kolodziejski, F. Kaertner, and E. Ippen, “Self-referenced Erbium Fiber Laser Frequency Comb at a GHz Repetition Rate,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2012), p. OW1C.2.
    [Crossref]
  12. D. Kielpinski and O. Gat, “Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking,” Opt. Express 20(3), 2717–2724 (2012).
    [Crossref] [PubMed]
  13. P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
    [Crossref] [PubMed]
  14. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
    [Crossref] [PubMed]
  15. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref] [PubMed]
  16. F. C. Cruz, M. C. Stowe, and J. Ye, “Tapered semiconductor amplifiers for optical frequency combs in the near infrared,” Opt. Lett. 31(9), 1337–1339 (2006).
    [Crossref] [PubMed]
  17. H. S. Moon, H. Y. Ryu, S. H. Lee, and H. S. Suh, “Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb,” Opt. Express 19(17), 15855–15863 (2011).
    [Crossref] [PubMed]
  18. R. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures,” IEEE Photon. Technol. Lett. 4(12), 1345–1347 (1992).
    [Crossref]
  19. R. I. Laming and D. N. Payne, “Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm,” IEEE Photon. Technol. Lett. 2(6), 418–421 (1990).
    [Crossref]
  20. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  21. K. Knabe, S. Wu, J. K. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
    [Crossref] [PubMed]
  22. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115–14120 (2009).
    [Crossref] [PubMed]
  23. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  24. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  25. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79 (2001).
    [Crossref]
  26. C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52(22), 5430–5439 (2013).
    [Crossref] [PubMed]

2014 (3)

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (6)

2010 (1)

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (2)

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79 (2001).
[Crossref]

1993 (1)

1992 (1)

R. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures,” IEEE Photon. Technol. Lett. 4(12), 1345–1347 (1992).
[Crossref]

1990 (1)

R. I. Laming and D. N. Payne, “Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm,” IEEE Photon. Technol. Lett. 2(6), 418–421 (1990).
[Crossref]

Akbulut, M.

Amezcua-Correa, R.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Bartels, A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Beha, K.

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
[Crossref] [PubMed]

Benabid, F.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79 (2001).
[Crossref]

Bradley, T. D.

Braje, D. A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Chen, J.

Coddington, I.

Corwin, K. L.

Couny, F.

Cruz, F. C.

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Davila-Rodriguez, J.

Del’Haye, P.

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
[Crossref] [PubMed]

Delfyett, P. J.

Diddams, S. A.

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Fendel, P.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Fourcade-Dutin, C.

Gat, O.

Grogan, M.

Hänsch, T. W.

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Hati, A.

Haus, H. A.

Heinecke, D. C.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Hoghooghi, N.

Hollberg, L.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

Hou, D.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Hsu, K.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Hussein, H.

Ippen, E. P.

Iwakuni, K.

Jablonski, M.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Jones, A. M.

Kärtner, F. X.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Kielpinski, D.

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Knabe, K.

Knight, J. C.

Kotake, T.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Laming, R.

R. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures,” IEEE Photon. Technol. Lett. 4(12), 1345–1347 (1992).
[Crossref]

Laming, R. I.

R. I. Laming and D. N. Payne, “Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm,” IEEE Photon. Technol. Lett. 2(6), 418–421 (1990).
[Crossref]

Lee, S. H.

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Light, P. S.

Lim, J.

Lim, J. K.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Mandridis, D.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

McFerran, J. J.

Moon, H. S.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Neely, W.

Nelson, L. E.

Newbury, N. R.

Nicholson, J. W.

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Osterman, S.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Ozdur, I.

Ozharar, S.

Papp, S. B.

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
[Crossref] [PubMed]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Payne, D. N.

R. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures,” IEEE Photon. Technol. Lett. 4(12), 1345–1347 (1992).
[Crossref]

R. I. Laming and D. N. Payne, “Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm,” IEEE Photon. Technol. Lett. 2(6), 418–421 (1990).
[Crossref]

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
[Crossref] [PubMed]

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Ren, Q.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Rieker, G. B.

Roberts, P. J.

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Ryu, H. Y.

Schlager, J. B.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Set, S. Y.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Sickler, J. W.

Sinclair, L. C.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Stowe, M. C.

Suh, H. S.

Swann, W. C.

Tamura, K.

Tanaka, D.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Thapa, R.

Tillman, K. A.

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Wang, C.

Wang, Y.

Wang, Y. Y.

Washburn, B. R.

Wheeler, N.

Wheeler, N. V.

Wilken, T.

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Williams, C.

Wu, J.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Wu, S.

Yaguchi, H.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Yamashita, S.

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Ycas, G.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Ye, J.

Zervas, M. N.

R. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures,” IEEE Photon. Technol. Lett. 4(12), 1345–1347 (1992).
[Crossref]

Zhang, S.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Zhang, Z.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Zhao, J.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. Yamashita, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

R. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures,” IEEE Photon. Technol. Lett. 4(12), 1345–1347 (1992).
[Crossref]

R. I. Laming and D. N. Payne, “Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm,” IEEE Photon. Technol. Lett. 2(6), 418–421 (1990).
[Crossref]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Nature Photon. (1)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon. 5(7), 425–429 (2011).
[Crossref]

Opt. Express (9)

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

J. J. McFerran, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
[Crossref] [PubMed]

D. Mandridis, C. Williams, I. Ozdur, and P. J. Delfyett, “Low noise chirped pulse mode-locked laser using an intra-cavity Fabry-Pérot etalon,” Opt. Express 19(10), 8994–8999 (2011).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. K. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009).
[Crossref] [PubMed]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115–14120 (2009).
[Crossref] [PubMed]

D. Kielpinski and O. Gat, “Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking,” Opt. Express 20(3), 2717–2724 (2012).
[Crossref] [PubMed]

H. S. Moon, H. Y. Ryu, S. H. Lee, and H. S. Suh, “Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb,” Opt. Express 19(17), 15855–15863 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Phys. Rev. Lett. (1)

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112(4), 043905 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Other (1)

D. Chao, M. Sander, G. Chang, J. Morse, J. Cox, G. Petrich, L. Kolodziejski, F. Kaertner, and E. Ippen, “Self-referenced Erbium Fiber Laser Frequency Comb at a GHz Repetition Rate,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2012), p. OW1C.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Overview schematic of single tooth saturated absorption spectroscopy. FC: fiber coupler, EDFA: Er-doped fiber amplifier, BPF: band pass filter, FBG: fiber Bragg grating, EOM: electro-optic modulator, Cir: circulator, PDH: Pound-Drever-Hall, FP: Fabry-Perot, AOM: acousto-optic modulator, and AM: amplitude modulator. Solid lines indicate optical paths, and dashed lines indicate electrical paths.
Fig. 2
Fig. 2 Schematic setup and optical spectrum of an 89 MHz erbium-doped fiber ring laser for single tooth saturation spectroscopy. The red arrow in the spectrum indicates the wavelength of the single comb tooth to be amplified.
Fig. 3
Fig. 3 Schematic setup up of (a) small signal cw EDFA, and (b) short pulse EDFA.
Fig. 4
Fig. 4 RF beatnote between the cw fiber laser and (a) the oscillator comb, (b) the comb after amplification by the small signal cw EDFA, and (c) the comb after amplification by the short pulse EDFA. (d) RF noise floor for the above three beatnotes (left solid), and RF beatnote SNR (right dashed) as a function of average comb power. All measurements are taken under 300 kHz RBW.
Fig. 5
Fig. 5 The sub-Doppler error signal generated from (a) an amplified single tooth, and (b) a cw fiber laser.
Fig. 6
Fig. 6 (a) Schematic setup for the optically referenced comb stability measurement. (b) Fractional instabilities (Allan deviations) of: (red dots) the comb at 1532.8 nm compared to a cw fiber laser reference; (blue squares) the cw reference at 1532.8 nm extrapolated from two identical reference heterodyne beat measurement; (black stars) GPS-disciplined Rb oscillator from spec sheet; (pink triangles) comb’s repetition rate frequency recorded by a GPS/Rb-referenced frequency counter; (green diamonds) reanalyzed data for Fig. 3(c) in [21]. Error bar on the red-dot line represents 1σ confidence intervals.

Tables (1)

Tables Icon

Table 1 Calculation of Comb Optical Instability at 100 ms within 100 and 500 nm of 1539 nm When Various Locking Schemes and RF and Optical References Are Employed

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ν m = δ ν m ν m = ( 1 m n r ) δ f 0 ν m + m n r δ ν r ν m
σ ν m = δ ν m ν m = m n r 2 n r 1 n r 2 × ν r 1 ν m × δ ν r 1 ν r 1 + n r 1 m n r 1 n r 2 × ν r 2 ν m × δ ν r 2 ν r 2

Metrics