Abstract

We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical tomography using a genetic algorithm

Ken D. Kihm and Donald P. Lyons
Opt. Lett. 21(17) 1327-1329 (1996)

Toward an autosetting mode-locked fiber laser cavity

U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and Ph. Grelu
J. Opt. Soc. Am. B 33(5) 825-833 (2016)

Anomalous pulse breakup in small-core photonic crystal fibers

A. Podlipensky, P. Szarniak, N. Y. Joly, and P. St. J. Russell
J. Opt. Soc. Am. B 25(12) 2049-2056 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref] [PubMed]
  2. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref] [PubMed]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 135–1184 (2006).
    [Crossref]
  4. D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [Crossref]
  5. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 1749–4885 (2007).
    [Crossref]
  6. A. Hause, T. X. Tran, F. Biancalana, A. Podlipensky, P.St.J. Russell, and F. Mitschke, “Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches,” Opt. Lett. 35, 2167–2169 (2010).
    [Crossref] [PubMed]
  7. A. Hause and F. Mitschke, “Soliton trains in motion,” Phys. Rev. A 82, 043838 (2010).
    [Crossref]
  8. T. X. Tran, A. Podlipensky, P.St. J. Russell, and F. Biancalana, “Theory of Raman multipeak states in solid-core photonic crystal fibers,” J. Opt. Soc. Am. B 27, 1785–1791 (2010).
    [Crossref]
  9. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
    [Crossref] [PubMed]
  10. C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
    [Crossref] [PubMed]
  11. C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
    [Crossref]
  12. F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22, 2451–2458 (2014).
    [Crossref] [PubMed]
  13. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
    [Crossref]
  14. J. Rothhardt, A. M. Heidt, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “High stability soliton frequency-shifting mechanisms for laser synchronization applications,” J. Opt. Soc. Am. B 29, 1257–1262 (2012).
    [Crossref]
  15. A. M. Al-kadry and M. Rochette, “Mid-infrared sources based on the soliton self-frequency shift,” J. Opt. Soc. Am. B 29, 1347–1355 (2012).
    [Crossref]
  16. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [Crossref]
  17. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
    [Crossref] [PubMed]
  18. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
    [Crossref]
  19. G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).
  20. A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
    [Crossref]
  21. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  22. J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
    [Crossref] [PubMed]
  23. Y. M. Wang, J. S. Nelson, Z. P. Chen, B. J. Reiser, R. S Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003).
    [Crossref] [PubMed]
  24. G Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
    [Crossref] [PubMed]
  25. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182–184 (2003).
    [Crossref] [PubMed]
  26. F. Spoeler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Foerst, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15, 10832–10841 (2007).
    [Crossref]
  27. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
    [Crossref] [PubMed]
  28. J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
    [Crossref]
  29. Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
    [Crossref] [PubMed]
  30. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
    [Crossref]
  31. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
    [Crossref]
  32. S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer, 2010).
  33. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).
    [Crossref] [PubMed]
  34. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, “Two-wavelength optical coherence tomography,” Radiophys. Quantum Electron. 47, 848–859 (2004).
    [Crossref]
  35. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [Crossref] [PubMed]
  36. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
    [Crossref] [PubMed]
  37. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, “Photonic crystal fiber design by means of a genetic algorithm,” Opt. Express 12, 1990–1995 (2004).
    [Crossref] [PubMed]
  38. W. Q. Zhang, J. E. Sharping, R. T. White, T. M. Monro, and S. Afshar Vahid, “Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation,” Opt. Express 18, 17294–17305 (2010).
    [Crossref] [PubMed]
  39. W. Q. Zhang, S. Afshar Vahid, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
    [Crossref]
  40. R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567–572 (2008).
    [Crossref]
  41. Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
    [Crossref]
  42. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  43. S. Afshar Vahid and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [Crossref]
  44. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [Crossref]
  45. R. B. Agrawal and K. Deb, Simulated Binary Crossover for Continuous Search Space (Technical report, 1994).
  46. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms (Wiley & Sons, 2001).
  47. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
    [Crossref]
  48. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
    [Crossref]
  49. J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008).

2014 (1)

2013 (2)

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[Crossref]

2012 (3)

2011 (2)

Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
[Crossref]

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
[Crossref]

2010 (9)

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

A. Hause and F. Mitschke, “Soliton trains in motion,” Phys. Rev. A 82, 043838 (2010).
[Crossref]

J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[Crossref]

A. Hause, T. X. Tran, F. Biancalana, A. Podlipensky, P.St.J. Russell, and F. Mitschke, “Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches,” Opt. Lett. 35, 2167–2169 (2010).
[Crossref] [PubMed]

W. Q. Zhang, J. E. Sharping, R. T. White, T. M. Monro, and S. Afshar Vahid, “Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation,” Opt. Express 18, 17294–17305 (2010).
[Crossref] [PubMed]

T. X. Tran, A. Podlipensky, P.St. J. Russell, and F. Biancalana, “Theory of Raman multipeak states in solid-core photonic crystal fibers,” J. Opt. Soc. Am. B 27, 1785–1791 (2010).
[Crossref]

R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
[Crossref]

S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (2)

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567–572 (2008).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[Crossref] [PubMed]

2007 (2)

F. Spoeler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Foerst, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15, 10832–10841 (2007).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 1749–4885 (2007).
[Crossref]

2006 (2)

2005 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
[Crossref]

2004 (2)

V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, “Two-wavelength optical coherence tomography,” Radiophys. Quantum Electron. 47, 848–859 (2004).
[Crossref]

E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, “Photonic crystal fiber design by means of a genetic algorithm,” Opt. Express 12, 1990–1995 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (2)

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[Crossref]

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

1998 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1989 (1)

1987 (1)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[Crossref]

1986 (2)

Afshar Vahid, S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Agrawal, R. B.

R. B. Agrawal and K. Deb, Simulated Binary Crossover for Continuous Search Space (Technical report, 1994).

Akers, W. J.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Al-kadry, A. M.

Arevalillo-Herráez, M.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

Arteaga-Sierra, F. R.

Bang, O.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
[Crossref]

Berezin, M.Y.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

Biancalana, F.

Bigot, L.

Birks, T. A.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Bornemann, J.

Breuer, E. I.

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Cao, Q.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

Casscells, W.

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Chen, Z.

Chen, Z. P.

Choma, M. A.

J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008).

Chuck, R. S

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 135–1184 (2006).
[Crossref]

Dávila, A.

de Boer, J. F.

De Sterke, C. M.

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
[Crossref]

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
[Crossref]

De Sterke, M.

Deb, K.

R. B. Agrawal and K. Deb, Simulated Binary Crossover for Continuous Search Space (Technical report, 1994).

K. Deb, Multi-Objective Optimization using Evolutionary Algorithms (Wiley & Sons, 2001).

Deepa, S. N.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer, 2010).

Dekker, S. A.

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
[Crossref]

Demmler, S.

Douay, M.

Driben, R.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 135–1184 (2006).
[Crossref]

Eggleton, B. J.

Feldchtein, F. I.

Ferrando, A.

F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22, 2451–2458 (2014).
[Crossref] [PubMed]

C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[Crossref]

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[Crossref] [PubMed]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

Foerst, M.

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Gelikonov, G. V.

Gelikonov, V. M.

Geng, Y. J.

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 135–1184 (2006).
[Crossref]

Giessen, H.

Gladkova, N. D.

González, N.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 1749–4885 (2007).
[Crossref]

Gordon, J. P.

Gris-Sánchez, I.

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
[Crossref]

Grychtol, P.

Guo, B.

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Guo-Bing, Y.

Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
[Crossref]

Hädrich, S.

Hasegawa, A.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[Crossref]

Haus, H. A.

Hause, A.

Heidt, A. M.

Hermes, B.

Hernández, V.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

Humbert, G

Huntley, J. M.

J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[Crossref]

Iksanov, R. R.

Izatt, J. A.

J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008).

Judge, A. C.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Kerrinckx, E.

Klima, T.

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Knight, J. C.

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
[Crossref]

G Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
[Crossref]

Kodama, Y.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[Crossref]

Kopf, D.

Kray, S.

Kuhlmey, B. T.

Kuranov, R. V.

Kurz, H.

Lal, B. N.

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Lederer, M. J.

Leon-Saval, S. G.

Limpert, J.

Loza, P.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

Magi, E. C.

Mägi, E. C.

Malomed, B. A.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Milián, C.

F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22, 2451–2458 (2014).
[Crossref] [PubMed]

C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[Crossref]

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[Crossref] [PubMed]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

Mitschke, F.

Mitschke, F. M.

Mollenauer, L. F.

Moltó, G.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

Monro, T. M.

Musin, R. R.

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567–572 (2008).
[Crossref]

Nassif, N.

Nelson, J. S.

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Ourutina, M. N.

Pant, R.

Park, B. H.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Podlipensky, A.

Pricking, S.

Quiquempois, Y.

Reiser, B. J.

Reitze, D. H.

Rochette, M.

Rothhardt, J.

Ruiz, P. D.

J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[Crossref]

Russell, P. St. J.

Russell, P.St. J.

Russell, P.St.J.

Sergeev, A. M.

Sharping, J. E.

Shu-Guang, L.

Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
[Crossref]

Shuo, L.

Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
[Crossref]

Sivanandam, S. N.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer, 2010).

Skryabin, D. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[Crossref]

C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 1749–4885 (2007).
[Crossref]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Spoeler, F.

Stifter, D.

Stolen, R. H.

Tomlinson, W. J.

Torres-Cisneros, M.

Torres-Gómez, I.

F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22, 2451–2458 (2014).
[Crossref] [PubMed]

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

Tran, T. X.

Tripathi, R.

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
[Crossref]

Tünnermann, A.

Wadsworth, W. J.

Wang, J.

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Wang, S. T.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. M.

Warren, J. A.

White, R. T.

Widjanarko, T.

J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[Crossref]

Wiesauer, K.

Willerson, J. T

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

Windeler, R. S.

Xiao-Yan, W.

Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
[Crossref]

Yulin, A. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[Crossref]

Zacarés, M.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

Zhang, W. Q.

Zhao, Y.

Zhegalova, N. G.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

Zheltikov, A. M.

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567–572 (2008).
[Crossref]

Chinese Phys. Lett. (1)

Y. Guo-Bing, L. Shu-Guang, L. Shuo, and W. Xiao-Yan, “The optimization of dispersion properties of photonic crystal fibers using a real-coded genetic algorithm,” Chinese Phys. Lett. 28, 064215 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[Crossref]

J. Am. Coll. Cardiol. (1)

J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T Willerson, and W. Casscells, “Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques,” J. Am. Coll. Cardiol. 39, 1305–1313 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M.Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (7)

J. Phys. D: Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543–2555 (2005).
[Crossref]

Meas. Sci. Technol. (1)

J. M. Huntley, T. Widjanarko, and P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[Crossref]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 1749–4885 (2007).
[Crossref]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567–572 (2008).
[Crossref]

Opt. Express (12)

F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).
[Crossref] [PubMed]

S. Afshar Vahid and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[Crossref] [PubMed]

F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22, 2451–2458 (2014).
[Crossref] [PubMed]

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. De Sterke, and B. J. Eggleton, “Highly efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 18, 17766–17773 (2011).
[Crossref]

S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[Crossref] [PubMed]

F. Spoeler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Foerst, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15, 10832–10841 (2007).
[Crossref]

Y. M. Wang, J. S. Nelson, Z. P. Chen, B. J. Reiser, R. S Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003).
[Crossref] [PubMed]

G Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
[Crossref] [PubMed]

E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, “Photonic crystal fiber design by means of a genetic algorithm,” Opt. Express 12, 1990–1995 (2004).
[Crossref] [PubMed]

W. Q. Zhang, J. E. Sharping, R. T. White, T. M. Monro, and S. Afshar Vahid, “Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation,” Opt. Express 18, 17294–17305 (2010).
[Crossref] [PubMed]

W. Q. Zhang, S. Afshar Vahid, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
[Crossref]

Opt. Lett. (6)

Phys. Rev. A (3)

A. Hause and F. Mitschke, “Soliton trains in motion,” Phys. Rev. A 82, 043838 (2010).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: from N-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[Crossref]

Proc. SPIE (1)

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, and V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[Crossref]

Radiophys. Quantum Electron. (1)

V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, “Two-wavelength optical coherence tomography,” Radiophys. Quantum Electron. 47, 848–859 (2004).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 135–1184 (2006).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Other (6)

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, and A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid), 137–147 (2009).

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer, 2010).

R. B. Agrawal and K. Deb, Simulated Binary Crossover for Continuous Search Space (Technical report, 1994).

K. Deb, Multi-Objective Optimization using Evolutionary Algorithms (Wiley & Sons, 2001).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (Bottom) Dispersion and cross section of the PCF used in our modeling. Shaded area marks the range of the input pump, λ0. (Top) Typical spectral output and target channels centered at λ c 1,2 (delimited by dashed lines) in which ψ1,2 are evaluated [See Eq. (4)]. The vertical black line marks the zero GVD and the red one the λ0 used in this example.
Fig. 2
Fig. 2 (a) Sketch of the three GA stages: pth = 50, pmax = 100. Probability distributions for (b) simulated binary crossover (SBX) and (c) polynomial mutation.
Fig. 3
Fig. 3 (a–c) Spectrograms of the output spectra, z = 25 cm, corresponding to the optimization results given by the GA algorithm after m = 300 evaluations. S1,2 label the two solitonic pulses. (d–f) Spectral evolutions along the fiber associated to (a–c), respectively, retrieved from the optimal input pulse parameters corresponding to three different pairs of channels, λc1,2. Input pulse parameters are given in Table I. Vertical solid lines mark the zero GVD wavelength.
Fig. 4
Fig. 4 (a) Parameter space cloud of the 300 individuals (and fitness) generated by the GA in the optimization yielding to the solution in Figs. 3 (b),(e). The best individual is marked in red and dashed mark its input parameters. (b) Fitness evolution versus generated individuals in chronological order. Dashed vertical line marks the threshold population pth = 50 corresponding to the end of stage 1 (random generation). Best (at m ≈ 260), Instantaneous minimum, and average fitness are also plotted (see legend).

Tables (1)

Tables Icon

Table 1 Parameters associated to the best individuals found by the GA, shown in Fig. 3.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i z A ( z , t ) = q 2 β q ( ω 0 ) q ! [ i t ] q A ( z , t ) + γ A ( z , t ) + d t R ( t ) | A ( z , t t ) | 2 ,
γ = ε ε 0 2 ω 0 c 3 d x d y n 2 ( x , y ) [ 2 | E | 4 + | E 2 | 2 ] [ d x d y Re { E × H * } u ^ z ] 2 ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 Θ ( t ) e t τ 2 sin ( t τ 1 ) ,
ϕ ψ 1 1 ψ 2 1 , ψ j ( ω c j ; Δ ω ) ω c j Δ ω ω c j + Δ ω d ω | A ˜ ( L , ω ) | 2 , j = 1 , 2 ,
𝒳 ^ [ I ^ 0 ^ 0 ^ 0 ^ 0 ^ I ^ 0 ^ 0 ^ α ^ + α ^ 0 ^ 0 ^ α ^ α ^ + 0 ^ 0 ^ ] ; ( α ^ ± ) j k x k 1 ± σ ¯ k 2 ζ j k , ; x k Θ ( u k 0.05 ) ,
σ ¯ k = σ / 0 σ 𝒫 x ( σ ) = u k ; 𝒫 x ( σ ) = { 0.5 [ n + 1 ] σ n , σ 1 0.5 [ n + 1 ] σ [ n + 2 ] , σ > 1 .
g k = g k + m k Δ k ζ ¯ k ; m k Θ ( u k 2 3 ) ,
𝒫 m ( ζ ) = 0.5 { n + 1 [ 1 | ζ | ] n } ,
ζ ¯ k = ζ / 1 ζ 𝒫 m ( ζ ) = u k ; u k [ 0 , 1 ] .

Metrics