Abstract

High-index-contrast (HIC) waveguide such as Si and Si3N4 has small mode size enabling compact integration. However, the coupling loss with single mode fiber is also remarkable owning to the mode mismatching. Therefore, mode size converter, as the interface between HIC waveguide and optical fiber, takes an important role in the field of integrated optics. The material with refractive index (RI) between HIC waveguide and optical fiber can be used as a bridge to reduce the mode mismatching loss. In this letter, we employ silicon oxynitride (SiON) with RI about 1.50 as the intermediate material and optimize the structure of the SiON waveguide to match with cleaved single mode fiber and HIC waveguide separately. Combined with inverse taper and suspended structure, the mismatching loss is reduced and the dependence to the dimension of the structure is also released. The coupling loss is 1.2 and 1.4 dB/facet for TE and TM mode, respectively, with 3dB alignment tolerance of ± 3.5 µm for Si3N4 waveguide with just 200nm-wide tip. While for Si waveguide, a critical dimension of 150nm is applied due to the higher index contrast than Si3N4 waveguide. Similar alignment tolerance is realized with coupling loss about 1.8 and 2.1 dB/facet for TE and TM mode. The polarization dependence loss (PDL) for both platforms is within 0.5 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spot-size converter with a SiO2 spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling

Yuriko Maegami, Ryohei Takei, Emiko Omoda, Takeru Amano, Makoto Okano, Masahiko Mori, Toshihiro Kamei, and Youichi Sakakibara
Opt. Express 23(16) 21287-21295 (2015)

Suspended optical fiber-to-waveguide mode size converter for Silicon photonics

Qing Fang, Tsung-Yang Liow, Jun Feng Song, Chee Wei Tan, Ming Bin Yu, Guo Qiang Lo, and Dim-Lee Kwong
Opt. Express 18(8) 7763-7769 (2010)

Mode-size converter with high coupling efficiency and broad bandwidth

Qing Fang, Junfeng Song, Xianshu Luo, Mingbin Yu, Guoqiang Lo, and Yuliang Liu
Opt. Express 19(22) 21588-21594 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
    [Crossref]
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  3. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
    [Crossref]
  4. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
    [Crossref] [PubMed]
  5. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
    [Crossref]
  6. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
    [Crossref]
  7. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
    [Crossref] [PubMed]
  8. C. Doerr, “A low-loss, compact wide-FSR-AWG using SiON planar lightwave circuit technology,” in Optical Fiber Communication Conference, vol. 2, FJ1, 703 (2003).
  9. K. Worhoff, P. V. Lambeck, and L. Driessen, “Design, tolerance analysis and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol. 17(8), 1401–1407 (1999).
    [Crossref]
  10. J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon nitride-based compact double-ring resonator comb filber with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
    [Crossref]
  11. S. Rsoft, “Rsoft CAD V2013.12 User Guide,” http://optics.synopsys.com/learn/learn-sw-training.html (2013).
  12. Y. Huang, X. S. Luo, J. F. Song, T.-Y. Liow, and G. Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on SOI platform with thermal optics device integration for silicon photonics,” in Optical Fiber Communication Conference, paper Th1A.1 (2014).
    [Crossref]

2010 (3)

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

2008 (2)

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon nitride-based compact double-ring resonator comb filber with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

2003 (1)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

1999 (1)

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[Crossref]

Almeida, V. R.

Ben Bakir, B.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Chen, Y.-K.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

de Gyves, A. V.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Driessen, L.

Fang, Q.

Fedeli, J.-M.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[Crossref]

Kwong, D. L.

Lambeck, P. V.

Liow, T. Y.

Liow, T.-Y.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Lipson, M.

Lo, G. Q.

Lyan, P.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

Orobtchouk, R.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Panepucci, R. R.

Porzier, C.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Roman, A.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

Song, J. F.

Tan, C. W.

Tao, S. H.

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon nitride-based compact double-ring resonator comb filber with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

Worhoff, K.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

Yu, M. B.

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1668–1669 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (3)

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon nitride-based compact double-ring resonator comb filber with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[Crossref]

Other (3)

C. Doerr, “A low-loss, compact wide-FSR-AWG using SiON planar lightwave circuit technology,” in Optical Fiber Communication Conference, vol. 2, FJ1, 703 (2003).

S. Rsoft, “Rsoft CAD V2013.12 User Guide,” http://optics.synopsys.com/learn/learn-sw-training.html (2013).

Y. Huang, X. S. Luo, J. F. Song, T.-Y. Liow, and G. Q. Lo, “Low loss (<0.2dB per transition) CMOS compatible multi-layer Si3N4-on SOI platform with thermal optics device integration for silicon photonics,” in Optical Fiber Communication Conference, paper Th1A.1 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematics of the suggested mode size converter.
Fig. 2
Fig. 2 The mode mismatching losses of SiON waveguide with (a) fiber and (b) Si3N4 tip under different RI. The insets are the mode distribution of the fiber and Si3N4 tip in the two facets.
Fig. 3
Fig. 3 The mode mismatching losses of SiON waveguide with fiber and Si3N4 tip under different thickness of SiON film for (a, b) TE mode and (c, d) TM mode.
Fig. 4
Fig. 4 The calculated electrical field distribution of the mode size converter at Y = 0 surface for (a) TE and (b) TM mode.
Fig. 5
Fig. 5 The effect of center deviation to the mode mismatching loss. The deviation in X, Y and diagonal directions are calculated under different polarization states.
Fig. 6
Fig. 6 SEM images of the mode size converter. (a) Tip of Si3N4; (b) Tip of SiON; (c) Cantilever of SiO2; (d) Cross-SEM image of the mode size converter.
Fig. 7
Fig. 7 The measured coupling loss between Si3N4 waveguide and cleaved/lensed SMF in the C + L band with the designed mode size converter.
Fig. 8
Fig. 8 Alignment tolerances of structure 5 and 6 in both X and Y axes at 1550 nm for (a) TE mode and (b) TM mode.
Fig. 9
Fig. 9 (a) Cross section of the mode size converter on SOI wafer. (b) The mode mismatching loss of SiON waveguide with Si tip under different width.
Fig. 10
Fig. 10 (a) The measured coupling loss between Si waveguide and cleaved SMF in the C + L band with the designed mode size converter. (b) Alignment tolerance of the mode size converter in both X and Y axes at 1550 nm for TE mode and TM mode.

Tables (2)

Tables Icon

Table 1 Value of the Parameters in the Design

Tables Icon

Table 2 Coupling Loss (dB/facet) of Different Mode Size Converters with Lensed and Cleaved SMF at 1550 nm*

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η ( d B ) = 10 lg ( | E 1 * E 2 d A | 2 | E 1 | 2 d A | E 2 | 2 d A ) ,

Metrics