Abstract

This study investigates the effects of geometric irregularity and surface roughness on the single-scattering properties of randomly oriented dielectric particles. Starting from a regular crystal with smooth faces, effects of roughening are compared with effects of perturbing the regular configuration of the smooth faces. Using the same slope distribution for small roughness facets and tilted faces provides a natural way to compare the effects on the single-scattering properties. It is found that the geometric irregularity and surface roughness have similar effects on the single-scattering properties of an ensemble of randomly oriented particles. In other words, particles with irregular geometries and those with surface roughness are optically equivalent if the slope distributions are the same. Furthermore, an ensemble of particles with irregular geometries can be used as an effective approximation for simulation of the scattering properties of roughened particles, and vice versa. This approach also provides new interpretation of the observed, relatively featureless and smooth, scattering phase functions of naturally occurring particles.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds

Yu Xie, Ping Yang, George W. Kattawar, Bryan A. Baum, and Yongxiang Hu
Appl. Opt. 50(8) 1065-1081 (2011)

Modeling the scattering properties of mineral aerosols using concave fractal polyhedra

Chao Liu, R. Lee Panetta, Ping Yang, Andreas Macke, and Anthony J. Baran
Appl. Opt. 52(4) 640-652 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Cross, “Scanning electron microscopy of evaporating ice,” Science 164(3876), 174–175 (1969).
    [Crossref] [PubMed]
  2. H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
    [Crossref]
  3. Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
    [Crossref]
  4. G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).
  5. S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).
  6. B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
    [Crossref]
  7. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53(19), 2813–2825 (1996).
    [Crossref]
  8. T. Nousiainen and K. Muinonen, “Surface-roughness effects on single-scattering properties of wavelength-scale particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 389–397 (2007).
    [Crossref]
  9. M. Kahnert and T. Rother, “Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach,” Opt. Express 19(12), 11138–11151 (2011).
    [Crossref] [PubMed]
  10. P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
    [Crossref]
  11. C. Liu, R. L. Panetta, and P. Yang, “The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes,” J. Quant. Spectrosc. Radiat. Transf. 129, 169–185 (2013).
    [Crossref]
  12. O. Kemppinen, T. Nousiainen, and H. Lindqvist, “The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles,” J. Quant. Spectrosc. Radiat. Transf.in press.
  13. J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
    [Crossref]
  14. C. G. Schmitt and A. J. Heymsfield, “Observational quantification of the separation of simple and complex atmospheric ice particles,” Geophys. Res. Lett. 41(4), 1301–1307 (2014).
    [Crossref]
  15. Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
    [Crossref]
  16. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71(2), 223–248 (1998).
  17. V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
    [Crossref]
  18. H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
    [Crossref]
  19. E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
    [Crossref]
  20. C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
    [Crossref] [PubMed]
  21. Y. Grynko, Y. Shkuratov, and J. Förstner, “Light scattering by randomly irregular dielectric particles larger than the wavelength,” Opt. Lett. 38(23), 5153–5156 (2013).
    [Crossref] [PubMed]
  22. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997).
    [Crossref]
  23. C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012).
    [Crossref]
  24. C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).
    [Crossref]
  25. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
    [Crossref] [PubMed]
  26. L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

2014 (3)

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

C. G. Schmitt and A. J. Heymsfield, “Observational quantification of the separation of simple and complex atmospheric ice particles,” Geophys. Res. Lett. 41(4), 1301–1307 (2014).
[Crossref]

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

2013 (5)

C. Liu, R. L. Panetta, and P. Yang, “The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes,” J. Quant. Spectrosc. Radiat. Transf. 129, 169–185 (2013).
[Crossref]

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
[Crossref] [PubMed]

Y. Grynko, Y. Shkuratov, and J. Förstner, “Light scattering by randomly irregular dielectric particles larger than the wavelength,” Opt. Lett. 38(23), 5153–5156 (2013).
[Crossref] [PubMed]

2012 (2)

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012).
[Crossref]

2011 (2)

M. Kahnert and T. Rother, “Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach,” Opt. Express 19(12), 11138–11151 (2011).
[Crossref] [PubMed]

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

2010 (1)

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

2009 (2)

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

2008 (1)

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

2007 (1)

T. Nousiainen and K. Muinonen, “Surface-roughness effects on single-scattering properties of wavelength-scale particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 389–397 (2007).
[Crossref]

2006 (2)

Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
[Crossref]

V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
[Crossref]

2001 (1)

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

1998 (1)

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71(2), 223–248 (1998).

1997 (1)

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997).
[Crossref]

1996 (2)

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53(19), 2813–2825 (1996).
[Crossref]

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
[Crossref] [PubMed]

1969 (1)

J. D. Cross, “Scanning electron microscopy of evaporating ice,” Science 164(3876), 174–175 (1969).
[Crossref] [PubMed]

Bansemer, A.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

Baran, A. J.

C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
[Crossref] [PubMed]

Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
[Crossref]

Baum, B. A.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

Benning, M.

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

Bi, L.

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).
[Crossref]

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

Braker, B.

V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
[Crossref]

Brock, R. S.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

Busen, R.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Cole, B. H.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

Collier, C. T.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Cotton, R. J.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Cross, J. D.

J. D. Cross, “Scanning electron microscopy of evaporating ice,” Science 164(3876), 174–175 (1969).
[Crossref] [PubMed]

de Haan, J. F.

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Febvre, G.

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Fiebig, M.

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Förstner, J.

Gayet, J. F.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Gayet, J. G.

V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
[Crossref]

Gourbeyre, C.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

Greenaway, R. S.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Grynko, Y.

Hesse, E.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
[Crossref]

Heymsfield, A. J.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

C. G. Schmitt and A. J. Heymsfield, “Observational quantification of the separation of simple and complex atmospheric ice particles,” Geophys. Res. Lett. 41(4), 1301–1307 (2014).
[Crossref]

Hirst, E.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Hong, G.

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

Hovenier, J. W.

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Hu, Y.

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

Hu, Y. X.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

Ishimoto, H.

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

Jourdan, O.

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Kahnert, M.

Kärcher, B.

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Kattawar, G. W.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

Kaye, P. H.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
[Crossref]

Kemppinen, O.

O. Kemppinen, T. Nousiainen, and H. Lindqvist, “The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles,” J. Quant. Spectrosc. Radiat. Transf.in press.

Lawson, A.

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

Lawson, P.

V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
[Crossref]

Lindqvist, H.

O. Kemppinen, T. Nousiainen, and H. Lindqvist, “The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles,” J. Quant. Spectrosc. Radiat. Transf.in press.

Liou, K. N.

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71(2), 223–248 (1998).

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
[Crossref] [PubMed]

Liu, C.

C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
[Crossref] [PubMed]

C. Liu, R. L. Panetta, and P. Yang, “The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes,” J. Quant. Spectrosc. Radiat. Transf. 129, 169–185 (2013).
[Crossref]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012).
[Crossref]

Liu, Q. H.

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997).
[Crossref]

Lowen, B.

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

Lu, J. Q.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

Macke, A.

C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
[Crossref] [PubMed]

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53(19), 2813–2825 (1996).
[Crossref]

Mano, Y.

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

Masuda, K.

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

Merrelli, A.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

Minikin, A.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Minnis, P.

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

Mioche, G.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

Mueller, J.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53(19), 2813–2825 (1996).
[Crossref]

Muinonen, K.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

T. Nousiainen and K. Muinonen, “Surface-roughness effects on single-scattering properties of wavelength-scale particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 389–397 (2007).
[Crossref]

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Muñoz, O.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Neshyba, S. P.

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

Nousiainen, T.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

T. Nousiainen and K. Muinonen, “Surface-roughness effects on single-scattering properties of wavelength-scale particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 389–397 (2007).
[Crossref]

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

O. Kemppinen, T. Nousiainen, and H. Lindqvist, “The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles,” J. Quant. Spectrosc. Radiat. Transf.in press.

Panetta, R. L.

C. Liu, R. L. Panetta, and P. Yang, “The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes,” J. Quant. Spectrosc. Radiat. Transf. 129, 169–185 (2013).
[Crossref]

C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
[Crossref] [PubMed]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012).
[Crossref]

Raschke, E.

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53(19), 2813–2825 (1996).
[Crossref]

Rol, E.

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Rother, T.

Rowe, P. M.

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

Schlager, H.

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Schmitt, C.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

Schmitt, C. G.

C. G. Schmitt and A. J. Heymsfield, “Observational quantification of the separation of simple and complex atmospheric ice particles,” Geophys. Res. Lett. 41(4), 1301–1307 (2014).
[Crossref]

Schumann, U.

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

Shcherbakov, V.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
[Crossref]

Shkuratov, Y.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

Y. Grynko, Y. Shkuratov, and J. Förstner, “Light scattering by randomly irregular dielectric particles larger than the wavelength,” Opt. Lett. 38(23), 5153–5156 (2013).
[Crossref] [PubMed]

Sun, W.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

Uchiyama, A.

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

Ulanowski, Z.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
[Crossref]

Vassen, W.

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Videen, G.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

Volten, H.

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

Wang, C.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

Winker, D. M.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

Yang, P.

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes,” J. Quant. Spectrosc. Radiat. Transf. 129, 169–185 (2013).
[Crossref]

C. Liu, R. L. Panetta, P. Yang, A. Macke, and A. J. Baran, “Modeling the scattering properties of mineral aerosols using concave fractal polyhedra,” Appl. Opt. 52(4), 640–652 (2013).
[Crossref] [PubMed]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012).
[Crossref]

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71(2), 223–248 (1998).

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
[Crossref] [PubMed]

Yurkin, M. A.

Zaizen, Y.

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

Zubko, E.

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

Appl. Opt. (2)

Atmo. Phys. Chems. (1)

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmo. Phys. Chems. 14(3), 1649–1662 (2014).
[Crossref]

Atmos. Phys. Chems. (1)

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Phys. Chems. 11(6), 2537–2544 (2011).
[Crossref]

Contrib. Atmos. Phys. (1)

P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71(2), 223–248 (1998).

Geophys. Res. Lett. (1)

C. G. Schmitt and A. J. Heymsfield, “Observational quantification of the separation of simple and complex atmospheric ice particles,” Geophys. Res. Lett. 41(4), 1301–1307 (2014).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds-part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Rem. Sens. 46(7), 1940–1947 (2008).
[Crossref]

J. Atmos. Sci. (2)

A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53(19), 2813–2825 (1996).
[Crossref]

V. Shcherbakov, J. G. Gayet, B. Braker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63(5), 1513–1525 (2006).
[Crossref]

J. Geophys. Res. (4)

H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106(15), 17375–17401 (2001).
[Crossref]

G. Febvre, J. F. Gayet, A. Minikin, H. Schlager, V. Shcherbakov, O. Jourdan, R. Busen, M. Fiebig, B. Kärcher, and U. Schumann, “On optical and microphysical characteristics of contrails and cirrus,” J. Geophys. Res. 114(2), D02204 (2009).

S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res. 118(8), 3309–3318 (2013).

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice crystals at 0.532 and 1.064-µm wavelengths,” J. Geophys. Res. 114(22), D00H08 (2009).

J. Quant. Spectrosc. Radiat. Transf. (7)

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm,” J. Quant. Spectrosc. Radiat. Transf. 146, 123–139 (2014).
[Crossref]

Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by complex ice-analogue crystals,” J. Quant. Spectrosc. Radiat. Transf. 100(1–3), 382–392 (2006).
[Crossref]

T. Nousiainen and K. Muinonen, “Surface-roughness effects on single-scattering properties of wavelength-scale particles,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 389–397 (2007).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes,” J. Quant. Spectrosc. Radiat. Transf. 129, 169–185 (2013).
[Crossref]

H. Ishimoto, Y. Zaizen, A. Uchiyama, K. Masuda, and Y. Mano, “Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson–Voronoi tessellation,” J. Quant. Spectrosc. Radiat. Transf. 111(16), 2434–2443 (2010).
[Crossref]

E. Zubko, K. Muinonen, O. Muñoz, T. Nousiainen, Y. Shkuratov, W. Sun, and G. Videen, “Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples,” J. Quant. Spectrosc. Radiat. Transf. 131, 175–187 (2013).
[Crossref]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

J. D. Cross, “Scanning electron microscopy of evaporating ice,” Science 164(3876), 174–175 (1969).
[Crossref] [PubMed]

Other (1)

O. Kemppinen, T. Nousiainen, and H. Lindqvist, “The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles,” J. Quant. Spectrosc. Radiat. Transf.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry of tilted surface element of a rough particle or titled face of an irregular smooth particle.
Fig. 2
Fig. 2 Geometry of a smooth and roughened column with an aspect ratio of 1. The rough surface has σ2 = 0.4.
Fig. 3
Fig. 3 Examples of randomly generated irregular hexagonal columns.
Fig. 4
Fig. 4 P11 and P12/P11 of irregular hexagonal columns with different degree of irregularity. The size parameter of the corresponding regular column is 100, and the PSTD is used for the simulation.
Fig. 5
Fig. 5 Comparison of the P11 and P12/P11 of irregular, roughened and smooth hexagonal columns with a size parameter of 100 simulated by the PSTD.
Fig. 6
Fig. 6 Comparison of the P11 and P12/P11 of irregular, roughened and smooth hexagonal columns with a size parameter of 1000 simulated by the IGOM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( s x , s y ) = 1 π σ 2 e x p [ s x 2 + s y 2 σ 2 ] ,
s x = | tan θ | cos φ , s y = | tan θ | sin φ
cos θ = 1 1 σ 2 ln ε 1 ,
φ = 2 π ε 2 ,

Metrics