Abstract

Here we report strong enhancement in ultraviolet-photoluminescence (UV-PL) of ZnO thin films (grown on a SiC substrate) covered by monolayer dielectric fused silica or polystyrene microspheres with diameters ranging from 0.5 to 7.5 μm. The excited light scatted in the film is collected by the microspheres to stimulate whispering gallery modes, by which the internal quantum efficiency of spontaneous emission is enhanced. Meanwhile, the microsphere monolayer efficiently couples emitted light energy from the luminescent film to the far-field for PL detection. A UV-PL enhancement up to 10-fold via a 5-µm-diameter microsphere monolayer is experimentally demonstrated in this work. The unique optical property of microsphere in photoluminescence (PL) enhancement makes them promising for high-sensitivity PL measurements as well as design of photoelectric devices with low loss and high efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays

Lixue Yang, Yinzhou Yan, Qiang Wang, Yong Zeng, Feifei Liu, Lin Li, Yan Zhao, and Yijian Jiang
Opt. Express 25(6) 6000-6014 (2017)

Ultraviolet luminescence enhancement of planar wide bandgap semiconductor film by a hybrid microsphere cavity/dual metallic nanoparticles sandwich structure

Yujie Zhang, Yinzhou Yan, Lixue Yang, Cheng Xing, Yong Zeng, Yan Zhao, and Yijian Jiang
Opt. Express 27(11) 15399-15412 (2019)

Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array

Yinzhou Yan, Jinwen Liu, Cheng Xing, Qiang Wang, Yong Zeng, Yan Zhao, and Yijian Jiang
Appl. Opt. 57(27) 7740-7749 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
    [Crossref]
  2. D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
    [Crossref]
  3. W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
    [Crossref]
  4. J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
    [Crossref]
  5. P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express 16(12), 8896–8901 (2008).
    [Crossref] [PubMed]
  6. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
    [Crossref] [PubMed]
  7. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
    [Crossref]
  8. P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
    [Crossref]
  9. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
    [Crossref] [PubMed]
  10. M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
    [Crossref]
  11. M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
    [Crossref]
  12. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
    [Crossref] [PubMed]
  13. M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
    [Crossref]
  14. S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
    [Crossref]
  15. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
    [Crossref] [PubMed]
  16. K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
    [Crossref]
  17. E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
    [Crossref] [PubMed]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  19. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  20. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
    [Crossref] [PubMed]
  21. A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [Crossref]
  22. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  23. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
    [Crossref] [PubMed]
  24. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
    [Crossref] [PubMed]
  25. C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
    [Crossref]
  26. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref]
  27. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  28. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  29. H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).
  30. J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
    [Crossref] [PubMed]
  31. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
    [Crossref]
  32. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
    [Crossref] [PubMed]
  33. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
    [Crossref] [PubMed]
  34. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
    [Crossref] [PubMed]
  35. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
    [Crossref] [PubMed]
  36. X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
    [Crossref]
  37. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
    [Crossref]
  38. N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
    [Crossref]
  39. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [Crossref] [PubMed]
  40. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
    [Crossref]
  41. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
    [Crossref] [PubMed]
  42. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
    [Crossref] [PubMed]
  43. W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
    [Crossref] [PubMed]
  44. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
    [Crossref]
  45. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]
  46. E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
    [PubMed]
  47. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [Crossref] [PubMed]
  48. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
    [Crossref]
  49. T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt. 38(23), 5046–5057 (1999).
    [Crossref] [PubMed]

2014 (2)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).

2013 (5)

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

2012 (2)

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

2011 (3)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

2010 (3)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

2009 (5)

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
[Crossref] [PubMed]

D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

2008 (6)

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express 16(12), 8896–8901 (2008).
[Crossref] [PubMed]

M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
[Crossref]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (5)

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
[Crossref] [PubMed]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

2005 (3)

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[Crossref]

2004 (2)

2003 (2)

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

2001 (2)

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

2000 (2)

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[Crossref] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

1986 (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Ahn, K. J.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Ahn, S. H.

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

Ahn, W.

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

An, J.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[Crossref]

Aouani, H.

Artemyev, M. V.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Atanasov, P. A.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).

Backman, V.

Bao, S. Y.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
[Crossref] [PubMed]

Bawendi, M. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
[Crossref]

Bliznakova, I. A.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Bonod, N.

Boriskina, S. V.

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Cai, M.

Chan, Y.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
[Crossref]

Chang, R. K.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Chen, C. L.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Chen, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Chen, Y. F.

Chen, Z.

Cheng, C. L.

Cheng, P.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express 16(12), 8896–8901 (2008).
[Crossref] [PubMed]

Choi, K. C.

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

Choi, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Choi, S.-H.

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Chou, Y. Y.

Crégut, O.

Devilez, A.

Dikovska, A. O.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Do, Y. S.

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

Donegan, J. F.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Fu, C. L.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Gachet, D.

Gaponik, N.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Gérard, D.

Gerlach, M.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Gijs, M. A. M.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Haacke, S.

Haglund, R. F.

Han, I. K.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

He, J.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Heifetz, A.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Hill, S. C.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Hirlimann, C.

Hirota, K.

Holler, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Hong, B. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Hong, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Hong, Y.

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

Huang, K.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Huang, L. L.

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hwang, S. W.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Ilchenko, V. S.

Imanieh, M. H.

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

Itzhakov, S.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

Jaschinski, H.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Ji, S.

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Jiang, J. C.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Jiang, S.

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Jo, J. S.

Jong, L. L.

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Kasim, J.

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Kim, C. O.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Kim, E.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Kim, G.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, J.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, J. H.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Kim, K.

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, M. C.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, S.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Kim, T. G.

M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
[Crossref]

Kim, W.

M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
[Crossref]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kimble, H. J.

Ko, D. H.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Ko, H.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Koleva, M. E.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Koo, J.-Y.

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Kreuzer, M. P.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Kyhm, J.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Lai, C. W.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[Crossref]

Langbein, W.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Lawrie, B. J.

Lecler, S.

Lecong, N.

Lee, G. Y.

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Lee, M.

M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
[Crossref]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Lee, S. M.

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Lei, D. Y.

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

Li, D.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express 16(12), 8896–8901 (2008).
[Crossref] [PubMed]

Li, J.

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Li, X.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Lim, K. Y.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Lin, H. Y.

Liu, M.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Liu, T.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Ma, C. Y.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Mabuchi, H.

Martin, I. R.

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

Martin, L. L.

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

Meletis, E. I.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Meng, Y. Y.

Milster, T. D.

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).

Mu, R.

Nedyalkov, N. N.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Ni, W. H.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

Nocera, D. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
[Crossref]

Ong, H. C.

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[Crossref]

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Oron, D.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

Painter, O.

Pan, Y.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Peng, X.

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Pérez-Rodriguez, C.

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

Peyghambarian, N.

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Ping, L. J.

Popov, E.

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Qu, S. W.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Quidant, R.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Rakovich, Y. P.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Rehspringer, J. L.

Reinhard, B. M.

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

Rigneault, H.

Rios, S.

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

Rogach, A. L.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Sahakian, A.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Savateeva, D.

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

See, A.

Sercel, P. C.

Shin, D. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Sim, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Siu, G. G.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Snee, P. T.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
[Crossref]

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Song, F.

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Stout, B.

Streed, E. W.

Sung, Y.

M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
[Crossref]

Taflove, A.

Ting, Y.

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Tsen, K. T.

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Ureña, E. B.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

Vahala, K. J.

Vernooy, D. W.

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Wannemacher, R.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Wenger, J.

Woggon, U.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Wolf, J. P.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Won Hwang, S.

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Wu, X. L.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Xiang, S. Z.

Xu, J. B.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

Xu, L.

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, D.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express 16(12), 8896–8901 (2008).
[Crossref] [PubMed]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).

Yang, L.

Yang, S.

Yekta, B. E.

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

Yu, J.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Yu, W. W.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

Yuan, Z.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Zhang, Q. Y.

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

ACS Nano (3)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanoscrystal/microsphere resonator composite,” Adv. Mater. 17(9), 1131–1136 (2005).
[Crossref]

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24(44), OP314–OP320 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

M. Liu, S. W. Qu, W. W. Yu, S. Y. Bao, C. Y. Ma, Q. Y. Zhang, J. He, J. C. Jiang, E. I. Meletis, and C. L. Chen, “Photoluminescence and extinction enhancement from ZnO films embedded with Ag nanoparticles,” Appl. Phys. Lett. 97(23), 231906 (2010).
[Crossref]

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[Crossref]

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

S. Kim, D. H. Shin, C. O. Kim, S. Won Hwang, S.-H. Choi, S. Ji, and J.-Y. Koo, “Enhanced ultraviolet emission from hybrid structures of single-walled carbon nanotubes/ZnO films,” Appl. Phys. Lett. 94(21), 213113 (2009).
[Crossref]

X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003).
[Crossref]

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Appl. Surf. Sci. (1)

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

J. Alloy. Comp. (1)

C. Pérez-Rodriguez, M. H. Imanieh, L. L. Martin, S. Rios, I. R. Martin, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” J. Alloy. Comp. 576, 363–368 (2013).
[Crossref]

J. Appl. Phys. (3)

K. Kim, S. M. Lee, Y. S. Do, S. H. Ahn, and K. C. Choi, “Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide,” J. Appl. Phys. 114(7), 074903 (2013).
[Crossref]

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[Crossref]

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

M. Lee, T. G. Kim, W. Kim, and Y. Sung, “Surface plasmon resonance (SPR) Electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112(27), 10079–10082 (2008).
[Crossref]

Light Sci. Appl. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Nano Lett. (1)

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Nanoscale Res. Lett. (1)

N. Gaponik, Y. P. Rakovich, M. Gerlach, J. F. Donegan, D. Savateeva, and A. L. Rogach, “Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects,” Nanoscale Res. Lett. 1(1), 68–73 (2006).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Nat. Mater. (1)

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
[Crossref] [PubMed]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Express (9)

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006).
[Crossref] [PubMed]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
[Crossref] [PubMed]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16(11), 7976–7984 (2008).
[Crossref] [PubMed]

P. Cheng, D. Li, and D. Yang, “Influence of substrates in ZnO devices on the surface plasmon enhanced light emission,” Opt. Express 16(12), 8896–8901 (2008).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961).
[Crossref]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced Backward-Directed Multiphoton-Excited Fluorescence from Dielectric Microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

E. Kim, J. Kyhm, J. H. Kim, G. Y. Lee, D. H. Ko, I. K. Han, and H. Ko, “White light emission from polystyrene under pulsed ultra violet laser irradiation,” Sci. Rep. 3, 3253 (2013).
[PubMed]

Science (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10(9), 1712–1718 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of UV-PL enhancement by microsphere monolayer/luminescent film hybrid structure. (a) Schematic of dielectric microsphere monolayer/ZnO film hybrid structure. (b) The cross-section view of a ZnO film grown on a SiC substrate. (c) The micrograph of a close-packed dielectric microsphere monolayer covered on the ZnO film. (d) The experimental setup of PL spectrum detection.
Fig. 2
Fig. 2 The PL spectra of the as-grown ZnO film and the corresponding ones covered with (a) 0.5-μm-diameter FS microspheres, (b) 1.5-μm-diameter FS microspheres, (c) 2.5-μm-diameter FS microspheres, (d) 5-μm-diameter FS microspheres, (e) 7.5-μm-diameter FS microspheres, and (f) 5-μm-diameter PS microspheres. The insets are the micrographs of various close-packed microsphere monolayers.
Fig. 3
Fig. 3 Numerical simulation of excitation laser focusing through a close-packed microsphere monolayer. (a) The schematic of FDTD model that represents a primitive cell of the hexagonal periodic close-packed microsphere monolayer. (b)-(g) The profiles of focused light intensity on ZnO films via (b) 0.5-µm-diameter FS microspheres, (c) 1.5-µm-diameter FS microspheres, (d) 2.5-µm-diameter FS microspheres, (e) 5-µm-diameter FS microspheres, (f) 7.5-µm-diameter PS microspheres and (g) 5-µm-diameter PS microspheres. The insets are the g contours of power intensity focused by the corresponding close-packed microsphere monolayer.
Fig. 4
Fig. 4 Numerical simulation of electric field intensity distributions of the scatted excited light near microspheres. (a) The schematic of the FDTD model and the electric field intensity distributions by (b) a 0.5-µm-diameter FS microsphere, (c) a 1.5-µm-diameter FS microsphere, (d) a 2.5-µm-diameter FS microsphere, (e) a 5-µm-diameter FS microsphere, (f) a 7.5-µm-diameter FS microsphere, and (g) a 5-µm-diameter PS microsphere.
Fig. 5
Fig. 5 Numerical simulation of electric field intensity distributions of the PL emitted light near microspheres. (a) The schematic of the FDTD model. (b)-(g) The electric field intensity and angular distributions by (b) a 0.5-µm-diameter FS microsphere, (c) a 1.5-µm-diameter FS microsphere, (d) a 2.5-µm-diameter FS microsphere, (e) a 5-µm-diameter FS microsphere, (f) a 7.5-µm-diameter FS microsphere, and (g) a 5-µm-diameter PS microsphere.
Fig. 6
Fig. 6 Schematics of (a) propagation in wave vectors in the luminescent film without microsphere coupling and (b) wave vectors coupled by microsphere array. (c) Variations of PL enhancement factor for various microspheres covered on ZnO thin films in experiment and numerical calculation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F P = 3 4 π 2 ( λ C n ) 3 ( Q V )
A = E m / E m E 0 / E 0 = 0 sin 1 N A I m ( φ ) sin φ d φ / 0 π 2 I m ( φ ) sin φ d φ 0 sin 1 N A I 0 ( φ ) sin φ d φ / 0 π 2 I 0 ( φ ) sin φ d φ

Metrics