Abstract

In a high-capacity ultra-long-haul optical coherent orthogonal frequency-division multiplexing (CO-OFDM) system, the dispersion tolerance is determined by the length of cyclic extension (CE). In this paper, we propose a novel scheme to substantially improve the dispersion tolerance of CO-OFDM systems without increasing the CE length. Multiple time-shifted discrete Fourier transform (DFT) windows are exploited at the receiver, each demodulating only a part of the subcarriers. Effectively, the proposed scheme reduces the bandwidth of the OFDM signals under demodulation. Numerical simulations are performed to show the improved dispersion tolerance of the proposed scheme in comparison with the conventional CO-OFDM system. We show that the dispersion tolerance improves by a factor equal to the number of DFT windows. The tradeoff between the improved dispersion tolerance and increased receiver complexity is also presented.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion tolerance enhancement using an improved offset-QAM OFDM scheme

Jian Zhao and Paul D. Townsend
Opt. Express 23(13) 17638-17652 (2015)

Interleaved and partial transmission interleaved optical coherent orthogonal frequency division multiplexing

Zizheng Cao, Henrie P. A. van den Boom, Eduward Tangdiongga, and Ton Koonen
Opt. Lett. 39(7) 2179-2182 (2014)

Energy-efficient 0.26-Tb/s coherent-optical OFDM transmission using photonic-integrated all-optical discrete Fourier transform

I. Kang, X. Liu, S. Chandrasekhar, M. Rasras, H. Jung, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques
Opt. Express 20(2) 896-904 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15(8), 4410–4418 (2007).
    [Crossref] [PubMed]
  2. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  3. M. Sung, J. Lee, and J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity,” IEEE Photon. Technol. Lett. 25(22), 2209–2212 (2013).
    [Crossref]
  4. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2009).
  5. X. W. Yi, W. Shieh, and Y. R. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
    [Crossref]
  6. H. Taga, “A theoretical study of OFDM system performance with respect to subcarrier numbers,” Opt. Express 17(21), 18638–18642 (2009).
    [Crossref] [PubMed]
  7. Y. Ha and W. Chung, “Non-data-aided phase noise suppression scheme for CO-OFDM systems,” IEEE Photon. Technol. Lett. 25(17), 1703–1706 (2013).
    [Crossref]
  8. M. Sung, S. Y. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
    [Crossref]
  9. Y. London and D. Sadot, “Nonlinear effects mitigation in coherent optical OFDM system in presence of high peak power,” J. Lightwave Technol. 29(21), 3275–3281 (2011).
    [Crossref]
  10. S. J. Cao, P. Y. Kam, and C. Y. Yu, “Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM Systems,” IEEE Photon. Technol. Lett. 24(22), 2067–2069 (2012).
    [Crossref]
  11. M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett. 23(21), 1594–1596 (2011).
    [Crossref]
  12. D. J. F. Barros and J. M. Kahn, “Optimized dispersion compensation using orthogonal frequency-division multiplexing,” J. Lightwave Technol. 26(16), 2889–2898 (2008).
    [Crossref]
  13. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [Crossref] [PubMed]
  14. Y. Qi, T. Yan, M. Yiran, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol. 27(3), 168–176 (2009).
    [Crossref]
  15. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [Crossref]
  16. C. Chen, Q. Zhuge, and D. V. Plant, “Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization,” Opt. Express 19(8), 7451–7467 (2011).
    [Crossref] [PubMed]
  17. A. Tolmachev and M. Nazarathy, “Filter-bank based efficient transmission of reduced-guard-interval OFDM,” Opt. Express 19(26), B370–B384 (2011).
    [Crossref] [PubMed]
  18. X. Yi and K. Qiu, “Estimation and compensation of sample frequency offset in coherent optical OFDM systems,” Opt. Express 19(14), 13503–13508 (2011).
  19. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [Crossref]
  20. L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46(5), 580–583 (1998).
    [Crossref]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic 1989).
  22. C. Zhao and R. Baxley, “Error vector magnitude analysis for OFDM systems,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers (ACSSC), pp. 1830–1834, (2006).
    [Crossref]
  23. R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (ICECE), pp. 408–411, (2006).
    [Crossref]

2013 (2)

M. Sung, J. Lee, and J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity,” IEEE Photon. Technol. Lett. 25(22), 2209–2212 (2013).
[Crossref]

Y. Ha and W. Chung, “Non-data-aided phase noise suppression scheme for CO-OFDM systems,” IEEE Photon. Technol. Lett. 25(17), 1703–1706 (2013).
[Crossref]

2012 (2)

M. Sung, S. Y. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

S. J. Cao, P. Y. Kam, and C. Y. Yu, “Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM Systems,” IEEE Photon. Technol. Lett. 24(22), 2067–2069 (2012).
[Crossref]

2011 (6)

2009 (2)

2008 (4)

2007 (1)

2006 (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

1998 (1)

L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46(5), 580–583 (1998).
[Crossref]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

Bao, H.

Bao, H. C.

Barros, D. J. F.

Baxley, R.

C. Zhao and R. Baxley, “Error vector magnitude analysis for OFDM systems,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers (ACSSC), pp. 1830–1834, (2006).
[Crossref]

Buchali, F.

Cao, S. J.

S. J. Cao, P. Y. Kam, and C. Y. Yu, “Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM Systems,” IEEE Photon. Technol. Lett. 24(22), 2067–2069 (2012).
[Crossref]

Chandrasekhar, S.

Chen, C.

Chung, W.

Y. Ha and W. Chung, “Non-data-aided phase noise suppression scheme for CO-OFDM systems,” IEEE Photon. Technol. Lett. 25(17), 1703–1706 (2013).
[Crossref]

Gnauck, A. H.

Ha, Y.

Y. Ha and W. Chung, “Non-data-aided phase noise suppression scheme for CO-OFDM systems,” IEEE Photon. Technol. Lett. 25(17), 1703–1706 (2013).
[Crossref]

Islam, A. R.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (ICECE), pp. 408–411, (2006).
[Crossref]

Jeong, J.

M. Sung, J. Lee, and J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity,” IEEE Photon. Technol. Lett. 25(22), 2209–2212 (2013).
[Crossref]

M. Sung, S. Y. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

Kahn, J. M.

Kam, P. Y.

S. J. Cao, P. Y. Kam, and C. Y. Yu, “Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM Systems,” IEEE Photon. Technol. Lett. 24(22), 2067–2069 (2012).
[Crossref]

Kang, S. Y.

Lee, J.

M. Sung, J. Lee, and J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity,” IEEE Photon. Technol. Lett. 25(22), 2209–2212 (2013).
[Crossref]

M. Sung, S. Y. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

Liu, X.

London, Y.

Ma, Y. R.

Mousa-Pasandi, M. E.

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett. 23(21), 1594–1596 (2011).
[Crossref]

Nazarathy, M.

Peckham, D. W.

Plant, D. V.

C. Chen, Q. Zhuge, and D. V. Plant, “Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization,” Opt. Express 19(8), 7451–7467 (2011).
[Crossref] [PubMed]

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett. 23(21), 1594–1596 (2011).
[Crossref]

Qi, Y.

Qiu, K.

Rahman, S.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (ICECE), pp. 408–411, (2006).
[Crossref]

Sadot, D.

Shafik, R.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (ICECE), pp. 408–411, (2006).
[Crossref]

Shieh, W.

Shim, J.

Sung, M.

M. Sung, J. Lee, and J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity,” IEEE Photon. Technol. Lett. 25(22), 2209–2212 (2013).
[Crossref]

M. Sung, S. Y. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

Taga, H.

Tang, Y.

Tolmachev, A.

Tomba, L.

L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46(5), 580–583 (1998).
[Crossref]

Winzer, P. J.

Yan, T.

Yi, X.

Yi, X. W.

Yiran, M.

Yu, C. Y.

S. J. Cao, P. Y. Kam, and C. Y. Yu, “Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM Systems,” IEEE Photon. Technol. Lett. 24(22), 2067–2069 (2012).
[Crossref]

Zhao, C.

C. Zhao and R. Baxley, “Error vector magnitude analysis for OFDM systems,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers (ACSSC), pp. 1830–1834, (2006).
[Crossref]

Zhu, B.

Zhuge, Q.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Sung, J. Lee, and J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity,” IEEE Photon. Technol. Lett. 25(22), 2209–2212 (2013).
[Crossref]

Y. Ha and W. Chung, “Non-data-aided phase noise suppression scheme for CO-OFDM systems,” IEEE Photon. Technol. Lett. 25(17), 1703–1706 (2013).
[Crossref]

S. J. Cao, P. Y. Kam, and C. Y. Yu, “Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM Systems,” IEEE Photon. Technol. Lett. 24(22), 2067–2069 (2012).
[Crossref]

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett. 23(21), 1594–1596 (2011).
[Crossref]

IEEE Trans. Commun. (1)

L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46(5), 580–583 (1998).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (7)

Other (4)

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2009).

G. P. Agrawal, Nonlinear Fiber Optics (Academic 1989).

C. Zhao and R. Baxley, “Error vector magnitude analysis for OFDM systems,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers (ACSSC), pp. 1830–1834, (2006).
[Crossref]

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering (ICECE), pp. 408–411, (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transmitted and received OFDM signals: (a) transmitted signal, (b) received signal at channel length shorter than cyclic extension length, and (c) received signal at channel length longer than cyclic extension length where f1 < f2 <f3.
Fig. 2
Fig. 2 Received signals in the proposed CO-SDW-OFDM where f1 < f2 <f3.
Fig. 3
Fig. 3 Received signals of the conventional CO-OFDM and proposed CO-SDW-OFDM systems in one symbol duration for comparison: (a) conventional CO-OFDM system and (b) proposed CO-SDW-OFDM system where f1 < f2 <f3.
Fig. 4
Fig. 4 Simulation configuration of the proposed CO-SDW-OFDM system.
Fig. 5
Fig. 5 EVM performances as a function of accumulated chromatic dispersion for different cyclic extension ratios. FFT size = 256.
Fig. 6
Fig. 6 EVM performances as a function of accumulated chromatic dispersion for the different FFT sizes and laser phase noises with laser linewidths: (a) 0 kHz, (b) 100 kHz, (c) 200 kHz, and (d) 400 kHz.
Fig. 7
Fig. 7 Maximum chromatic dispersion tolerances at EVM of 28% as a function of the number of shifted DFT windows for various CE ratios of OFDM signal.
Fig. 8
Fig. 8 EVM performances as a function of transmission distance of the conventional CO-OFDM and proposed CO-SDW-OFDM systems for different the number of shifted DFT windows (k).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

s i ( τ ) = 1 N c k = 0 N c 1 S k e j 2 π k N c τ , ( 0 τ N c 1 )
y i ( τ ) = r i ( τ ) + n i ( τ ) , ( 0 τ N c 1 )
r i ( τ ) = { r = N C E / 2 + 1 L p 1 s i 1 ( τ + N c + 3 × N C E / 2 r ) h c h a n n e l ( r ) I S I n = N C E / 2 + 1 L p 1 s i ( τ + N c + 3 × N C E / 2 n ) h c h a n n e l ( n ) I C I + q = 0 N c 1 s i ( τ q ) h c h a n n e l ( q ) ( 0 τ L p 1 ) r = 0 N c 1 s i ( τ r ) h c h a n n e l ( r ) ( L p τ N c L n 1 ) r = L n + 1 N C E / 2 1 s i + 1 ( τ N c N C E / 2 r ) h c h a n n e l ( r ) I S I n = L n + 1 N C E / 2 1 s i ( τ N c N C E / 2 n ) h c h a n n e l ( n ) I C I + q = 0 N c 1 s i ( τ q ) h c h a n n e l ( q ) ( N c L n τ N c 1 )
y u p p e r i ( τ ) = { q = 0 N c 1 s i ( τ q ) h u p p e r ( q ) + r = N C E / 2 + 1 L p + m 1 s i 1 ( τ + N c + 3 × N C E / 2 r ) h u p p e r ( r ) I S I n = N C E / 2 + 1 L p + m 1 s i ( τ + N c + 3 × N C E / 2 n ) h u p p e r ( n ) I C I ( 0 τ N c 1 )
y l o w e r i ( τ ) = { q = 0 N c 1 s i ( τ q ) h l o w e r ( q ) + r = L n m + 1 N C E / 2 1 s i + 1 ( τ N c N C E / 2 r ) h l o w e r ( r ) I S I n = L n m + 1 N C E / 2 1 s i ( τ N c N C E / 2 n ) h l o w e r ( n ) I C I ( 0 τ N c 1 )
4 m f s = c f c 2 | D | N s c Δ f
m = 1 4 c f c 2 | D | N s c N c f s 2
Y u p p e r i ( k ) = τ = 0 N c 1 y u p p e r i ( τ ) e j 2 π τ N c k , ( 0 k N c 1 )
Y l o w e r i ( k ) = τ = 0 N c 1 y l o w e r i ( τ ) e j 2 π τ N c k , ( 0 k N c 1 )
Y u p p e r i ( k ) = { S i ( k ) H u p p e r ( k ) ( 0 k N c / 2 1 ) S i ( k ) H u p p e r ( k ) + τ = 0 N c 1 ( r = N C E / 2 + 1 L p + m 1 s i 1 ( τ + N c + 3 × N C E / 2 r ) h u p p e r ( r ) ) e j 2 π τ N c k I S I u p p e r ( k ) τ = 0 N c 1 ( n = N C E / 2 + 1 L p + m 1 s i ( τ + N c + 3 × N C E / 2 n ) h u p p e r ( n ) ) e j 2 π τ N c k I C I u p p e r ( k ) ( N c / 2 k N c 1 )
Y l o w e r i ( k ) = { S i ( k ) H l o w e r ( k ) + τ = 0 N c 1 ( r = L n m + 1 N C E / 2 1 s i + 1 ( τ N c N C E / 2 r ) h l o w e r ( r ) ) e j 2 π τ N c k I S I l o w e r ( k ) τ = 0 N c 1 ( n = L n m + 1 N C E / 2 1 s i ( τ N c N C E / 2 n ) h l o w e r ( n ) ) e j 2 π τ N c k I C I l o w e r ( k ) ( 0 k N c / 2 1 ) S i ( k ) H l o w e r ( k ) ( N c / 2 k N c 1 )
Y i ( k ) = { Y u p p e r i ( k ) , ( 0 k N c / 2 1 ) Y l o w e r i ( k ) , ( N c / 2 k N c 1 )
N c / 2 × log 2 N c N s c × log 2 M
2 × ( N O F D E × log 2 N O F D E + N O F D E ) N s c × log 2 M × N O F D E / N c + N c / 2 × log 2 N c N s c × log 2 M

Metrics