Abstract

Ultrafast all-optical switching in a highly nonlinear fiber with a longitudinally varied zero-dispersion wavelength was investigated theoretically and experimentally. We describe fiber-matched methodology for construction of a fast, low energy photon switch. The design relies on static and dynamic models and allows performance target selection, under constraints of physical fiber characteristic. The new design methodology was used to construct one-pump switch in the highly efficient parametric mixer. We demonstrate that such a parametric gate can operate at 100 GHz rate, with 2 aJ control energy, while achieving better than 50% extinction ratio. Theoretical analysis and experimental measurements indicate that accurate mapping of the fiber local dispersion is critical in optimizing the bandwidth and control energy of the switch. Switching performance limits are discussed and means for impairment mitigation are described.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation

Peter A. Andrekson, Henrik Sunnerud, Shoichiro Oda, Takashi Nishitani, and Jiang Yang
Opt. Express 16(15) 10956-10961 (2008)

Phase-sensitive fiber-based parametric all-optical switch

Josué Parra-Cetina, Aleš Kumpera, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 23(26) 33426-33436 (2015)

Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber

Bill P.-P. Kuo, Masaaki Hirano, and Stojan Radic
Opt. Express 20(16) 18422-18431 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
    [Crossref]
  2. E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, R. D. Buijs, B. de Ronde, A. P. Mosk, J. M. Gérard, and W. L. Vos, “All-optical switching of a microcavity repeated at terahertz rates,” Opt. Lett. 38(3), 374–376 (2013).
    [Crossref] [PubMed]
  3. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
    [Crossref]
  4. X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
    [Crossref]
  5. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
    [Crossref] [PubMed]
  6. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [Crossref]
  7. L. Lengle, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, T-N. Nguyen, C. Pareige, R. Madec, J-C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10GB/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in ECOC, We.2 E.5. (2012).
  8. P. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16(15), 10956–10961 (2008).
    [Crossref] [PubMed]
  9. R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
    [Crossref] [PubMed]
  10. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  11. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [Crossref] [PubMed]
  12. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  13. Y. Chen and A. W. Snyder, “Four-photon parametric mixing in optical fibers: effect of pump depletion,” Opt. Lett. 14(1), 87–89 (1989).
    [Crossref] [PubMed]
  14. G. Cappellini and S. Trillo, “Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B 8(4), 824–838 (1991).
    [Crossref]
  15. VPItransmissionMakerTM, www.vpiphotonics.com
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  17. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004).
    [Crossref]
  18. G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
    [Crossref] [PubMed]
  19. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
    [Crossref]
  20. E. Myslivets, N. Alic, and S. Radic, “High resolution measurement of arbitrary-dispersion fibers: dispersion map reconstruction techniques,” J. Lightwave Technol. 28(23), 3478–3487 (2010).
  21. A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
    [Crossref] [PubMed]
  22. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
    [Crossref] [PubMed]
  23. J. Mandel, The Statistical Analysis of Experimental Data (Dover, 1984).
  24. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1997).

2014 (1)

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[Crossref] [PubMed]

A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
[Crossref] [PubMed]

2010 (3)

2008 (2)

P. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16(15), 10956–10961 (2008).
[Crossref] [PubMed]

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

2004 (1)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

1991 (1)

1989 (1)

1988 (1)

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
[Crossref]

1987 (1)

P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
[Crossref]

1986 (1)

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Agrawal, G. P.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Alic, N.

Andrekson, P.

Aparicio, J. M.

Ataie, V.

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Bajcsy, M.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Balch, K.

Buijs, R. D.

Cappellini, G.

Chavez Boggio, J. M.

Chen, H. H.

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
[Crossref]

Chen, X.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Chen, Y.

Claudon, J.

Ctistis, G.

de Ronde, B.

Dupuy, E.

Englund, D.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Faraon, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Gérard, J. M.

Gholami, F.

Han, X.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Kuo, B. P.

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Kuo, B. P. P.

Lee, Y. C.

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
[Crossref]

Lin, Q.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Liu, L.

Luo, K.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Majumdar, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Menyuk, C. R.

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
[Crossref]

Moro, S.

Mosk, A. P.

Myslivets, E.

Nishitani, T.

Nissim, R.

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Oda, S.

Pejkic, A.

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Petroff, P.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Potasek, M. J.

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Radic, S.

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Smith, P. W.

P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
[Crossref]

Snyder, A. W.

Sunnerud, H.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Tong, Z.

Trillo, S.

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Vos, W. L.

Vuckovic, J.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Wai, P. K. A.

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
[Crossref]

Wang, R.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Weng, Y.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Wiberg, A. O. J.

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Wu, L.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Yang, J.

Yüce, E.

Zhao, J.

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

Zlatanovic, S.

Appl. Phys. Lett. (1)

X. Han, Y. Weng, R. Wang, X. Chen, K. Luo, L. Wu, and J. Zhao, “Single photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92(15), 151109 (2008).
[Crossref]

IEEE Circuits Dev. Mag. (1)

P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Effect of axial inhomogeneity on solitons near the zero dispersion point,” J. Quantum Electron. 24(2), 373–381 (1988).
[Crossref]

Nat. Photonics (2)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Science (1)

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Other (7)

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

L. Lengle, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, T-N. Nguyen, C. Pareige, R. Madec, J-C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10GB/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in ECOC, We.2 E.5. (2012).

VPItransmissionMakerTM, www.vpiphotonics.com

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

J. Mandel, The Statistical Analysis of Experimental Data (Dover, 1984).

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Pump depletion mediated by four wave mixing in highly nonlinear fiber in the presence of weak signal. HNLF-highly nonlinear fiber.
Fig. 2
Fig. 2 (a) Longitudinal ZDW profile and the corresponding dispersion profile at the pump wavelength used in the static transfer characterization; (b) Calculated ER power-wavelength contour map. Δλ indicates wavelength offset between the pump and the control signal.
Fig. 3
Fig. 3 Spectrum at the output of the system in case when signal is not present at the input (dotted curve) and the case when the signal is present (solid curve); Control signal peak power corresponds to (a) −14dBm, (b) −18dBm, (c) −22dBm, (d) −26dBm, (e) −30dBm.
Fig. 4
Fig. 4 Time response of the system in case when signal is not present at the input (dotted curve) and the case when the signal is present (solid curve); Control signal peak power corresponds to (a) −14dBm, (b) −18dBm, (c) −22dBm, (d) −26dBm, (e) −30dBm, with corresponding histograms.
Fig. 5
Fig. 5 Experimental setup: Static measurement performed by quasi-CW pump (L2) and CW signal (L1); Dynamic measurement was performed by replacing pump and signal sources by mode-locked laser and cavitless pulse source (insertion indicated by dashed line). Acronyms: MLL-Mode Locked Laser, A-amplifier, L tunable laser, OBPF- Optical Band Pass Filter, C- Coupler, WDM – Wavelength division multiplexer, HNLF - Highly Nonlinear Fiber, VOA - Variable Optical Attenuator, MZM - Mach Zehnder modulator, PPG - Pattern Generator, PD – Photo diode, SO – Sampling oscilloscope, OSO - Optical Sampling Oscilloscope.
Fig. 6
Fig. 6 Measured ER power-wavelength contour map. Δλ indicates separation of the pump and the control signal.
Fig. 7
Fig. 7 Measured spectrum at the output of the system in case when signal is not present at the input (dotted curve) and the case when the signal is present (solid curve); Control signal peak power corresponds to (a) −14.5dBm (b) −18.5dBm, (c) −22.5dBm, (d) −26.5dBm,(e)-30.4dBm.
Fig. 8
Fig. 8 Measured temporal response of the system in case when signal is not present at the input (dotted curve) and the case when the signal is present (solid curve); Control signal peak power corresponds to (a) −14.5dBm, (b) −18.5 dBm, (c) −22.5dBm, (d) −26.5 dBm, (e) −30.4dBm, with corresponding histograms.
Fig. 9
Fig. 9 Measured extinction ratio vs. signal energy.

Tables (3)

Tables Icon

Table 1 Optical Switching Devices: Recent Reports4

Tables Icon

Table 2 Extinction Ratio

Tables Icon

Table 3 Extinction Ratio*

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

d A 0 d z = 2 γ A 1 A 2 A 0 sin ϕ
d A 1 d z = γ A 2 A 0 2 sin ϕ
d A 2 d z = γ A 1 A 0 2 sin ϕ
d ϕ d z = Δ k L + γ [ 2 A 0 2 ( A 1 2 + A 2 2 ) ] + γ [ A 0 2 ( A 1 A 2 + A 2 A 1 ) 4 A 1 A 2 ] cos ϕ
ϕ ( z ) = Δ k L z + ϕ 1 ( z ) + ϕ 2 ( z ) ϕ 0 ( z )
Δ k N L = γ [ A 1 2 ( 0 ) A 0 2 ( 0 ) 2 ]
Δ k L = β ( 2 ) Δ ω 2 + β ( 4 ) 12 Δ ω 4
f i = n i n
μ = i m i f i
σ 2 = i ( m i μ ) 2 f i
ε = t σ 2 n
E R = μ 1 μ 0
σ E R 2 = ( 1 μ 0 ) 2 σ 1 2 + ( μ 1 μ 0 2 ) 2 σ 0 2 + 2 ( μ 1 μ 0 3 ) σ 01
σ 01 = i ( m 1 i μ 1 ) ( m 0 i μ 0 ) n
Δ E R = t σ E R n
E R d B = 10 log 10 ( E R )
Δ E R d B = 10 Δ E R E R ln ( 10 )
P a v e = P P M R c a l = P P M P c a l 1 P c a l 2
Δ P a v e P a v e = Δ P P M P P M + Δ R c a l R c a l = Δ P P M P P M + Δ P c a l 1 P c a l 1 + Δ P c a l 2 P c a l 2 = 0.03 + 0.03 + 0.03 = 0.09
P p e a k = P a v e R c a l 2 = P a v e P c a l 2 _ 1 P c a l 2 _ 2
Δ P p e a k P p e a k = Δ P a v e P a v e + Δ P c a l 2 _ 1 P c a l 2 _ 1 + Δ P c a l 2 _ 2 P c a l 2 _ 2 = 0.09 + 0.03 + 0.03 = 0.12
P d B m = 10 log 10 ( 1000 P W )
Δ P d B = 10 Δ P W P W ln ( 10 )
N = N > > 1 P a v e T h ν
Δ N N = Δ P a v e P a v e = 0.09
y = 1.1 x 1.6
z A ( T ) = α 2 A ( T ) + D A ( T ) + N A ( T )
D = i β 2 2 2 T 2 + β 3 6 3 T 3
N = i γ ( | A ( T ) | 2 )

Metrics