Abstract

We propose a time domain structure of channel estimation for coherent optical communication systems, which employs training sequence based equalizer and is transparent to arbitrary quadrature amplitude modulation (QAM) formats. Enabled with this methodology, 1.02Tb/s polarization division multiplexed 32QAM Nyquist pulse shaping signal with a net spectral efficiency of 7.46b/s/Hz is transmitted over standard single-mode fiber link with Erbium-doped fiber amplifier only amplification. After 1190km transmission, the average bit-error rate is lower than the 20% hard-decision forward error correction threshold of 1.5 × 10−2. The transmission distance can be extended to 1428km by employing intra-subchannel nonlinear compensation with the digital back-propagation method.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung-Chang Chien, Yi Cai, Xin Xiao, and Xinying Li
Opt. Express 21(13) 15686-15691 (2013)

Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping

Meng Xiang, Songnian Fu, Ming Tang, Haoyuan Tang, Perry Shum, and Deming Liu
Opt. Express 22(14) 17448-17457 (2014)

First experimental demonstration of faster-than-Nyquist PDM-16QAM transmission over standard single mode fiber

Zhuopeng Xiao, B. Li, Songnian Fu, L. Deng, M. Tang, and Deming Liu
Opt. Lett. 42(6) 1072-1075 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
    [Crossref]
  2. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
    [Crossref]
  3. X. Zhou and L. Nelson, “400G WDM transmission on the 50GHz grid for future optical networks,” J. Lightwave Technol. 30(24), 3779–3792 (2012).
    [Crossref]
  4. Q. Zhuge, M. Morsy-Osman, M. Chagnon, X. Xu, M. Qiu, and D. V. Plant, “Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing,” Opt. Express 22(3), 2278–2288 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-3-2278 .
    [Crossref] [PubMed]
  5. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
    [Crossref]
  6. J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
    [Crossref]
  7. X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically preamplified receivers by combining PDM-QPSK and M-Ary pulse-position modulation,” J. Lightwave Technol. 30(4), 406–413 (2012).
    [Crossref]
  8. Z. Zheng, R. Ding, F. Zhang, and Z. Chen, “1.76Tb/s Nyquist PDM 16QAM signal transmission over 714km SSMF with the modified SCFDE technique,” Opt. Express 21(15), 17505–17511 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-15-17505 .
    [Crossref] [PubMed]
  9. E. F. Mateo and G. Li, “Compensation of interchannel nonlinearities using enhanced coupled equations for digital backward propagation,” Appl. Opt. 48(25), F6–F10 (2009).
    [Crossref] [PubMed]
  10. T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” J. Lightwave Technol. 30(24), 3805–3815 (2012).
    [Crossref]
  11. A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
    [Crossref]
  12. J. G. Proakis, Digital Communication (McGraw-Hill, 2001), Edition IV, Chap.11.
  13. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Su, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” Optical Fiber Communication Conference, Anaheim, CA, March 2013, Postdeadline paper PDP5A.1.
    [Crossref]
  14. J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20(7), 7915–7928 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-7915 .
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (5)

2011 (1)

2010 (1)

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

2009 (2)

2007 (1)

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[Crossref]

Birk, M.

Borel, P.

Borel, P. I.

Carlson, K.

Chagnon, M.

Chandrasekhar, S.

Chen, Y.-K.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[Crossref]

Chen, Z.

Z. Zheng, R. Ding, F. Zhang, and Z. Chen, “1.76Tb/s Nyquist PDM 16QAM signal transmission over 714km SSMF with the modified SCFDE technique,” Opt. Express 21(15), 17505–17511 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-15-17505 .
[Crossref] [PubMed]

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

Cho, J.

Ding, R.

Huang, M.-F.

Isaac, R.

Ishihara, K.

Kaneda, N.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[Crossref]

Kobayashi, T.

Koc, U.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[Crossref]

Kudo, R.

Leven, A.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[Crossref]

Li, G.

Li, J.

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

Lingle, R.

Liu, X.

Magill, P.

Mateo, E. F.

Matsuura, A.

Miyamoto, Y.

Morsy-Osman, M.

Nelson, L.

Nelson, L. E.

Peckham, D. W.

Plant, D. V.

Qiu, M.

Sano, A.

Shao, Y.

Takatori, Y.

Tkach, R. W.

Wang, T.

Winzer, P. J.

Wood, T. H.

Xie, C.

Xu, X.

Yu, J.

Zhang, F.

Z. Zheng, R. Ding, F. Zhang, and Z. Chen, “1.76Tb/s Nyquist PDM 16QAM signal transmission over 714km SSMF with the modified SCFDE technique,” Opt. Express 21(15), 17505–17511 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-15-17505 .
[Crossref] [PubMed]

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

Zhang, S.

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

Zhao, C.

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

Zheng, Z.

Zhou, X.

Zhu, B.

Zhuge, Q.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

J. Li, C. Zhao, S. Zhang, F. Zhang, and Z. Chen, “Experimental demonstration of 120-Gb/s PDM CO-SCFDE transmission over 317km SSMF,” IEEE Photon. Technol. Lett. 22(24), 1814–1816 (2010).
[Crossref]

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (3)

Other (2)

J. G. Proakis, Digital Communication (McGraw-Hill, 2001), Edition IV, Chap.11.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Su, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” Optical Fiber Communication Conference, Anaheim, CA, March 2013, Postdeadline paper PDP5A.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Frame structure of PDM Nyquist signals with time domain training sequences.
Fig. 2
Fig. 2 (a) Generation of Nyquist pulse shaping signal.(b) Block diagrams of the receiver-side DSP.
Fig. 3
Fig. 3 Schematic illustration of channel estimation.
Fig. 4
Fig. 4 Experimental setup of 1.02Tb/s Nyquist PDM-32QAM signal transmission system.
Fig. 5
Fig. 5 OSNR sensitivity for Nyquist PDM-32QAM signals.
Fig. 6
Fig. 6 Measured BER versus total launch power for (a) single channel after 2380km transmission and (b) superchannel after 1190km transmission.
Fig. 7
Fig. 7 Transmission performance for single and super channels.
Fig. 8
Fig. 8 (a) Optical spectrum at 0.01nm resolution (b) OSNR evolution measured at 0.1nm resolution.
Fig. 9
Fig. 9 BER measured for all the subchannels after 1190km SSMF transmission.
Fig. 10
Fig. 10 BER measured for all the subchannels after 1428km SSMF transmission.
Fig. 11
Fig. 11 Constellations of subchannel 11 with (a)LCEE and (b)DBP after 1428km SSMF transmission. X polarization is chosen as an example.
Fig. 12
Fig. 12 Constellations of 32QAM with different rings from 1 to 5.
Fig. 13
Fig. 13 Probability density functions of the signal distortion after 1428-km transmission. (a)-(e) are with LCEE. (f)-(j) are with DBP based nonlinear compensation.

Tables (1)

Tables Icon

Table 1 Arithmetic complexity analysis of LCEE and CMA/CMMA/DD-LMS

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P e x ( i ) = j = K K [ h x x , i ( j ) P r x ( i j ) + h x y , i ( j ) P r y ( i j ) ]
P e y ( i ) = j = K K [ h y x , i ( j ) P r y ( i j ) + h y y , i ( j ) P r x ( i j ) ]
ε ( i ) = ( ε x ( i ) ε y ( i ) ) = ( P x ( i ) P y ( i ) ) ( P e x ( i ) P e y ( i ) ) .
J ( j ) = i = 0 j λ j i | ε ( i ) | 2 .

Metrics