Abstract

We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband high birefringence and polarizing hollow core antiresonant fibers

Seyedmohammad Abokhamis Mousavi, Seyed Reza Sandoghchi, David J. Richardson, and Francesco Poletti
Opt. Express 24(20) 22943-22958 (2016)

Design of low-loss and highly birefringent hollow-core photonic crystal fiber

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T.A. Birks, J. C. Knight, and P. St. J. Russell
Opt. Express 14(16) 7329-7341 (2006)

Control of surface modes in low loss hollow-core photonic bandgap fibers

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight
Opt. Express 16(2) 1142-1149 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
    [Crossref]
  2. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
    [Crossref] [PubMed]
  3. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
    [Crossref]
  4. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14(17), 7974–7985 (2006).
    [Crossref] [PubMed]
  5. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
    [Crossref] [PubMed]
  6. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express,  13(1) 236–244 (2005).
    [Crossref] [PubMed]
  7. C. I. Falk, J. Hald, J. C. Petersen, and J. K. Lyngsø, “Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy,” Appl. Opt. 49(20), 3854–3859 (2010).
    [Crossref] [PubMed]
  8. J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
    [Crossref]
  9. E. N. Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
    [Crossref] [PubMed]
  10. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15(2), 325–338 (2007).
    [Crossref] [PubMed]
  11. F. Poletti and E. N. Fokoua, “Understanding the physical origin of surface modes and practical rules for their suppression,” in Proceedings of IEEE The 39th European Conference and Exhibition on Optical Communication (IEEE, 2013), pp. 1–3.
  12. G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
    [Crossref]
  13. X. Chen, M. J. Li, N. Venkataraman, M. Gallagher, W. Wood, A. Crowley, and K. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12(16), 3888–3893 (2004).
    [Crossref] [PubMed]
  14. F. Poletti, N. G. Broderick, D. Richardson, and T. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13(22), 9115–9124 (2005).
    [Crossref] [PubMed]
  15. R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
    [Crossref]

2013 (1)

2011 (1)

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
[Crossref]

2010 (3)

C. I. Falk, J. Hald, J. C. Petersen, and J. K. Lyngsø, “Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy,” Appl. Opt. 49(20), 3854–3859 (2010).
[Crossref] [PubMed]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

2007 (3)

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15(2), 325–338 (2007).
[Crossref] [PubMed]

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2004 (1)

1989 (1)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Amezcua-Correa, R.

Baddela, N. K.

Benabid, F.

Bhagwat, A. R.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Bird, D. M.

Birks, T. A.

Blin, S.

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

Broderick, N. G.

Broeng, J.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
[Crossref]

Burnett, M. T.

Calvani, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Caponi, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Chen, X.

Cisternino, F.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Couny, F.

Crowley, A.

Dangui, V.

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

Digonnet, M.

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

Falk, C. I.

Farr, L.

Fokoua, E. N.

E. N. Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref] [PubMed]

F. Poletti and E. N. Fokoua, “Understanding the physical origin of surface modes and practical rules for their suppression,” in Proceedings of IEEE The 39th European Conference and Exhibition on Optical Communication (IEEE, 2013), pp. 1–3.

Gaeta, A. L.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Gallagher, M.

Hald, J.

C. I. Falk, J. Hald, J. C. Petersen, and J. K. Lyngsø, “Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy,” Appl. Opt. 49(20), 3854–3859 (2010).
[Crossref] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[Crossref] [PubMed]

Han, Y. G.

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

Hayes, J. R.

Henningsen, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[Crossref] [PubMed]

Hwang, K.

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

Jakobsen, C.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
[Crossref]

Kim, G.

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

Kim, H. K.

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

Kino, G.

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

Koch, K.

Lee, K.

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

Lee, K. S.

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

Lee, S. B.

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

Li, M. J.

Londero, P.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Lyngsø, J. K.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
[Crossref]

C. I. Falk, J. Hald, J. C. Petersen, and J. K. Lyngsø, “Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy,” Appl. Opt. 49(20), 3854–3859 (2010).
[Crossref] [PubMed]

Maier, S. A.

Mangan, B. J.

Monro, T.

Petersen, J. C.

C. I. Falk, J. Hald, J. C. Petersen, and J. K. Lyngsø, “Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy,” Appl. Opt. 49(20), 3854–3859 (2010).
[Crossref] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[Crossref] [PubMed]

Petrovich, M. N.

Poletti, F.

Richardson, D.

Richardson, D. J.

Roberts, P. J.

Russell, P. St. J.

Sabert, H.

Simonsen, H. R.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
[Crossref]

Slepkov, A. D.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Venkataraman, N.

Venkataraman, V.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Wheeler, N. V.

Williams, D. P.

Wood, W.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Kim, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Experimental study of an elliptical-core photonic bandgap fiber with thin core wall and high aspect ratio and its birefringence characteristics,” Appl. Phys. B 101(3), 583–586 (2010).
[Crossref]

J. Lightwave Technol. (1)

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements on single-mode fibers,” J. Lightwave Technol. 7(8), 1187–1196 (1989).
[Crossref]

Meas. Sci. Technol. (1)

M. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. Kino, “Sensitivity and stability of an air-core fibre-optic gyroscope,” Meas. Sci. Technol. 18(10), 3089 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Single-mode 7-cell core hollow core photonic crystal fiber with increased bandwidth,” Proc. SPIE 7753, 77533Q (2011)
[Crossref]

Other (1)

F. Poletti and E. N. Fokoua, “Understanding the physical origin of surface modes and practical rules for their suppression,” in Proceedings of IEEE The 39th European Conference and Exhibition on Optical Communication (IEEE, 2013), pp. 1–3.

Supplementary Material (2)

» Media 1: MP4 (2009 KB)     
» Media 2: MP4 (1974 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Top:Microscope images of the fibers considered. Bottom: Corresponding idealized structures used in the modeling.
Fig. 2
Fig. 2 Sketch of the surface mode stripping. The green line represents an unwanted surface mode, the red lines the two polarization of the fundamental mode and the blue line is the cladding defect mode that can be used to attenuate the surface modes
Fig. 3
Fig. 3 For the four fibers the simulations from the idealized model (upper part of each quadrant) and the measured transmissions over 1 meter fiber (bottom part of each quadrant) are compared. In the mode trajectory plots green dots represent surface modes, red dots the fundamental modes, blue dots the cladding defect modes and dark grey the cladding modes
Fig. 4
Fig. 4 The simulated mode trajectories for fiber III and the overlap integrals between surface modes and cladding defect modes are plotted in the case of 4, 6 and 8 rings of holes, respectively. Green dots represent surface modes, red dots the fundamental modes, blue dots the cladding defect modes and black dots the cladding modes. The red dashed lines represent the bandgap edges for the simulation in the case of an infinite photonic crystal
Fig. 5
Fig. 5 (left) Schematic of the measurement, (right) Obtained optical intensity profiles
Fig. 6
Fig. 6 Single frame from movies of the near field vs time during fiber external perturbation (touch) at 1550nm and microscope image of the fiber. Left: Fiber without cladding defects (see Media 1) Right: Fiber III (see Media 2).
Fig. 7
Fig. 7 Left: Measured group modal birefringence with scanning wavelength method is compared to the idealized model simulation, Right: Measured polarization holding parameter (h-parameter) in blue for fiber III and gray for a fiber with the elliptical features on the core wall, but without the cladding defects

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = | glass / air interfaces E 1 * E 2 d l | 2 ( E 1 × H 1 * ) z ^ d A ( E 2 × H 2 * ) z ^ d A
| B g ( λ ) | = λ 2 Δ λ L
C = 10 log ( P x P x + P y ) = 10 log ( 1 e 2 h L 2 )
h 2 L ( ρ x + ρ y ) , ρ x = P x ( L ) P y ( L ) for P y ( 0 ) = 0 , ρ y = P y ( L ) P x ( L ) for P x ( 0 ) = 0

Metrics