Abstract

Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineered microsphere contrast agents for optical coherence tomography

Tin Man Lee, Amy L. Oldenburg, Shoeb Sitafalwalla, Daniel L. Marks, Wei Luo, Farah Jean-Jacques Toublan, Kenneth S. Suslick, and Stephen A. Boppart
Opt. Lett. 28(17) 1546-1548 (2003)

Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging

Teng Luo, Peng Huang, Guo Gao, Guangxia Shen, Shen Fu, Daxiang Cui, Chuanqing Zhou, and Qiushi Ren
Opt. Express 19(18) 17030-17039 (2011)

Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles

Jesse S. Aaron, Junghwan Oh, Timothy A. Larson, Sonia Kumar, Thomas E. Milner, and Konstantin V. Sokolov
Opt. Express 14(26) 12930-12943 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
    [Crossref] [PubMed]
  2. H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
    [Crossref] [PubMed]
  3. A. F. Stein, J. Ilavsky, R. Kopace, E. E. Bennett, and H. Wen, “Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique,” Opt. Express 18(12), 13271–13278 (2010).
    [Crossref] [PubMed]
  4. B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
    [Crossref]
  5. Y. Liu, B. Ahr, A. Linkin, G. J. Diebold, and C. Rose-Petruck, “X-ray spatial harmonic imaging of phase objects,” Opt. Lett. 36(12), 2209–2211 (2011).
    [Crossref] [PubMed]
  6. D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
    [Crossref] [PubMed]
  7. M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
    [Crossref] [PubMed]
  8. J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
    [Crossref] [PubMed]
  9. D. P. Patterson, P. E. Prevelige, and T. Douglas, “Nanoreactors by Programmed Enzyme Encapsulation Inside the Capsid of the Bacteriophage P22,” ACS Nano 6(6), 5000–5009 (2012).
    [Crossref] [PubMed]
  10. D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
    [Crossref]
  11. D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
    [Crossref] [PubMed]
  12. T. Douglas and M. Young, “Host–guest encapsulation of materials by assembled virus protein cages,” Nature 393(6681), 152–155 (1998).
    [Crossref]
  13. S. Kang and T. Douglas, “Biochemistry. Some Enzymes Just Need a Space of Their Own,” Science 327(5961), 42–43 (2010).
    [Crossref] [PubMed]
  14. B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed Evolution of a Protein Container,” Science 331(6017), 589–592 (2011).
    [Crossref] [PubMed]
  15. M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
    [Crossref] [PubMed]
  16. Y. P. Ren, S. M. Wong, and L. Y. Lim, “Application of Plant Viruses as Nano Drug Delivery Systems,” Pharm. Res. 27(11), 2509–2513 (2010).
    [Crossref] [PubMed]
  17. L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
    [Crossref] [PubMed]
  18. K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
    [Crossref] [PubMed]
  19. P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
    [Crossref] [PubMed]
  20. M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
    [Crossref] [PubMed]
  21. N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
    [Crossref] [PubMed]
  22. T. Douglas and M. Young, “Viruses: Making Friends with Old Foes,” Science 312(5775), 873–875 (2006).
    [Crossref] [PubMed]
  23. L. A. Lee and Q. Wang, “Adaptations of Nanoscale Viruses and Other Protein Cages for Medical Applications,” Nanomedicine 2(3), 137–149 (2006).
    [PubMed]
  24. M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
    [Crossref]
  25. A. de la Escosura, R. J. M. Nolte, and J. J. L. M. Cornelissen, “Viruses and Protein Cages as Nanocontainers and Nanoreactors,” J. Mater. Chem. 19(16), 2274–2278 (2009).
    [Crossref]
  26. L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
    [Crossref]
  27. I. Yildiz, S. Shukla, and N. F. Steinmetz, “Applications of Viral Nanoparticles in Medicine,” Curr. Opin. Biotechnol. 22(6), 901–908 (2011).
    [Crossref] [PubMed]
  28. L. A. Lee, Z. W. Niu, and Q. Wang, “Viruses and Virus-like Protein Assemblies - Chemically Programmable Nanoscale Building Blocks,” Nano Res. 2(5), 349–364 (2009).
    [Crossref]
  29. M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
    [Crossref] [PubMed]
  30. M. L. Galisteo and J. King, “Conformational Transformations in the Protein Lattice of Phage P22 Procapsids,” Biophys. J. 65(1), 227–235 (1993).
    [Crossref] [PubMed]
  31. J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
    [Crossref] [PubMed]
  32. E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
    [PubMed]
  33. E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
    [PubMed]

2013 (1)

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

2012 (4)

B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
[Crossref]

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

D. P. Patterson, P. E. Prevelige, and T. Douglas, “Nanoreactors by Programmed Enzyme Encapsulation Inside the Capsid of the Bacteriophage P22,” ACS Nano 6(6), 5000–5009 (2012).
[Crossref] [PubMed]

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

2011 (7)

Y. Liu, B. Ahr, A. Linkin, G. J. Diebold, and C. Rose-Petruck, “X-ray spatial harmonic imaging of phase objects,” Opt. Lett. 36(12), 2209–2211 (2011).
[Crossref] [PubMed]

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed Evolution of a Protein Container,” Science 331(6017), 589–592 (2011).
[Crossref] [PubMed]

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

I. Yildiz, S. Shukla, and N. F. Steinmetz, “Applications of Viral Nanoparticles in Medicine,” Curr. Opin. Biotechnol. 22(6), 901–908 (2011).
[Crossref] [PubMed]

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
[Crossref] [PubMed]

2010 (5)

N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
[Crossref] [PubMed]

Y. P. Ren, S. M. Wong, and L. Y. Lim, “Application of Plant Viruses as Nano Drug Delivery Systems,” Pharm. Res. 27(11), 2509–2513 (2010).
[Crossref] [PubMed]

A. F. Stein, J. Ilavsky, R. Kopace, E. E. Bennett, and H. Wen, “Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique,” Opt. Express 18(12), 13271–13278 (2010).
[Crossref] [PubMed]

S. Kang and T. Douglas, “Biochemistry. Some Enzymes Just Need a Space of Their Own,” Science 327(5961), 42–43 (2010).
[Crossref] [PubMed]

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

2009 (6)

H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
[Crossref] [PubMed]

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
[Crossref] [PubMed]

L. A. Lee, Z. W. Niu, and Q. Wang, “Viruses and Virus-like Protein Assemblies - Chemically Programmable Nanoscale Building Blocks,” Nano Res. 2(5), 349–364 (2009).
[Crossref]

A. de la Escosura, R. J. M. Nolte, and J. J. L. M. Cornelissen, “Viruses and Protein Cages as Nanocontainers and Nanoreactors,” J. Mater. Chem. 19(16), 2274–2278 (2009).
[Crossref]

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

2008 (1)

H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
[Crossref] [PubMed]

2007 (2)

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

2006 (4)

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

T. Douglas and M. Young, “Viruses: Making Friends with Old Foes,” Science 312(5775), 873–875 (2006).
[Crossref] [PubMed]

L. A. Lee and Q. Wang, “Adaptations of Nanoscale Viruses and Other Protein Cages for Medical Applications,” Nanomedicine 2(3), 137–149 (2006).
[PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

2005 (1)

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

1998 (1)

T. Douglas and M. Young, “Host–guest encapsulation of materials by assembled virus protein cages,” Nature 393(6681), 152–155 (1998).
[Crossref]

1993 (1)

M. L. Galisteo and J. King, “Conformational Transformations in the Protein Lattice of Phage P22 Procapsids,” Biophys. J. 65(1), 227–235 (1993).
[Crossref] [PubMed]

Abedin, M. J.

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

Ahr, B.

Allen, M.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

Bao, N.

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

Bedwell, G. J.

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

Bennett, E. E.

A. F. Stein, J. Ilavsky, R. Kopace, E. E. Bennett, and H. Wen, “Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique,” Opt. Express 18(12), 13271–13278 (2010).
[Crossref] [PubMed]

H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
[Crossref] [PubMed]

H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
[Crossref] [PubMed]

Brumfield, S.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

Buckhouse, E. D.

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

Carroll, S. C.

H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
[Crossref] [PubMed]

Cornelissen, J. J. L. M.

A. de la Escosura, R. J. M. Nolte, and J. J. L. M. Cornelissen, “Viruses and Protein Cages as Nanocontainers and Nanoreactors,” J. Mater. Chem. 19(16), 2274–2278 (2009).
[Crossref]

Crowley, B. E.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

Danscher, G.

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Datta, A.

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

de la Escosura, A.

A. de la Escosura, R. J. M. Nolte, and J. J. L. M. Cornelissen, “Viruses and Protein Cages as Nanocontainers and Nanoreactors,” J. Mater. Chem. 19(16), 2274–2278 (2009).
[Crossref]

Derdak, Z.

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Diebold, G. J.

B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
[Crossref]

Y. Liu, B. Ahr, A. Linkin, G. J. Diebold, and C. Rose-Petruck, “X-ray spatial harmonic imaging of phase objects,” Opt. Lett. 36(12), 2209–2211 (2011).
[Crossref] [PubMed]

Doering, P.

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Douglas, T.

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

D. P. Patterson, P. E. Prevelige, and T. Douglas, “Nanoreactors by Programmed Enzyme Encapsulation Inside the Capsid of the Bacteriophage P22,” ACS Nano 6(6), 5000–5009 (2012).
[Crossref] [PubMed]

S. Kang and T. Douglas, “Biochemistry. Some Enzymes Just Need a Space of Their Own,” Science 327(5961), 42–43 (2010).
[Crossref] [PubMed]

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

T. Douglas and M. Young, “Viruses: Making Friends with Old Foes,” Science 312(5775), 873–875 (2006).
[Crossref] [PubMed]

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

T. Douglas and M. Young, “Host–guest encapsulation of materials by assembled virus protein cages,” Nature 393(6681), 152–155 (1998).
[Crossref]

El-Boubbou, K.

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

Flenniken, M.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

Flenniken, M. L.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

Francis, M. B.

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
[Crossref] [PubMed]

Frank, J. A.

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

Galisteo, M. L.

M. L. Galisteo and J. King, “Conformational Transformations in the Protein Lattice of Phage P22 Procapsids,” Biophys. J. 65(1), 227–235 (1993).
[Crossref] [PubMed]

Gambhir, S. S.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
[Crossref] [PubMed]

Garimella, P. D.

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

Gillitzer, F.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

Gupta, A.

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

Harlen, K.

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

Harmsen, A. G.

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

Harmsen, A. L.

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

Hegedus, M. M.

H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
[Crossref] [PubMed]

H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
[Crossref] [PubMed]

Hilvert, D.

B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed Evolution of a Protein Container,” Science 331(6017), 589–592 (2011).
[Crossref] [PubMed]

Hsiao, S. C.

N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
[Crossref] [PubMed]

Ilavsky, J.

Jackiw, L.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

Jokerst, J. V.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
[Crossref] [PubMed]

Jutila, M.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

Kang, S.

S. Kang and T. Douglas, “Biochemistry. Some Enzymes Just Need a Space of Their Own,” Science 327(5961), 42–43 (2010).
[Crossref] [PubMed]

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

King, J.

M. L. Galisteo and J. King, “Conformational Transformations in the Protein Lattice of Phage P22 Procapsids,” Biophys. J. 65(1), 227–235 (1993).
[Crossref] [PubMed]

Klem, M. T.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

Kopace, R.

LaFrance, B.

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

Larsen, A.

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Lee, L. A.

L. A. Lee, Z. W. Niu, and Q. Wang, “Viruses and Virus-like Protein Assemblies - Chemically Programmable Nanoscale Building Blocks,” Nano Res. 2(5), 349–364 (2009).
[Crossref]

L. A. Lee and Q. Wang, “Adaptations of Nanoscale Viruses and Other Protein Cages for Medical Applications,” Nanomedicine 2(3), 137–149 (2006).
[PubMed]

Li, K.

K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
[Crossref] [PubMed]

Liepold, L. O.

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

Lim, L. Y.

Y. P. Ren, S. M. Wong, and L. Y. Lim, “Application of Plant Viruses as Nano Drug Delivery Systems,” Pharm. Res. 27(11), 2509–2513 (2010).
[Crossref] [PubMed]

Linkin, A.

Liu, Y.

B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
[Crossref]

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Y. Liu, B. Ahr, A. Linkin, G. J. Diebold, and C. Rose-Petruck, “X-ray spatial harmonic imaging of phase objects,” Opt. Lett. 36(12), 2209–2211 (2011).
[Crossref] [PubMed]

Lobovkina, T.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
[Crossref] [PubMed]

Lu, X. B.

K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
[Crossref] [PubMed]

Lucon, J.

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

Nguyen, H. G.

K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
[Crossref] [PubMed]

Niu, Z. W.

L. A. Lee, Z. W. Niu, and Q. Wang, “Viruses and Virus-like Protein Assemblies - Chemically Programmable Nanoscale Building Blocks,” Nano Res. 2(5), 349–364 (2009).
[Crossref]

Nolte, R. J. M.

A. de la Escosura, R. J. M. Nolte, and J. J. L. M. Cornelissen, “Viruses and Protein Cages as Nanocontainers and Nanoreactors,” J. Mater. Chem. 19(16), 2274–2278 (2009).
[Crossref]

Ortiz, V.

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Patterson, D. P.

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

D. P. Patterson, P. E. Prevelige, and T. Douglas, “Nanoreactors by Programmed Enzyme Encapsulation Inside the Capsid of the Bacteriophage P22,” ACS Nano 6(6), 5000–5009 (2012).
[Crossref] [PubMed]

Prevelige, P. E.

D. P. Patterson, P. E. Prevelige, and T. Douglas, “Nanoreactors by Programmed Enzyme Encapsulation Inside the Capsid of the Bacteriophage P22,” ACS Nano 6(6), 5000–5009 (2012).
[Crossref] [PubMed]

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

Qazi, S.

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

Rand, D.

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Rapacchi, S.

H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
[Crossref] [PubMed]

Raymond, K. N.

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

Reichhardt, C.

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

Ren, Y. P.

Y. P. Ren, S. M. Wong, and L. Y. Lim, “Application of Plant Viruses as Nano Drug Delivery Systems,” Pharm. Res. 27(11), 2509–2513 (2010).
[Crossref] [PubMed]

Romanini, D. W.

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

Rose-Petruck, C.

B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
[Crossref]

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Y. Liu, B. Ahr, A. Linkin, G. J. Diebold, and C. Rose-Petruck, “X-ray spatial harmonic imaging of phase objects,” Opt. Lett. 36(12), 2209–2211 (2011).
[Crossref] [PubMed]

Rynda-Apple, A.

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

Sadauskas, E.

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Schwarz, B.

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

Shen, L.

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

Shukla, S.

I. Yildiz, S. Shukla, and N. F. Steinmetz, “Applications of Viral Nanoparticles in Medicine,” Curr. Opin. Biotechnol. 22(6), 901–908 (2011).
[Crossref] [PubMed]

Stein, A. F.

Steinmetz, N. F.

I. Yildiz, S. Shukla, and N. F. Steinmetz, “Applications of Viral Nanoparticles in Medicine,” Curr. Opin. Biotechnol. 22(6), 901–908 (2011).
[Crossref] [PubMed]

Stephanopoulos, N.

N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
[Crossref] [PubMed]

Stoltenberg, M.

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Suci, P.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

Tatícek, M.

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Tong, G. J.

N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
[Crossref] [PubMed]

Uchida, M.

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

van der Oost, J.

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

Varpness, Z.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

Vogel, U.

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Wallin, H.

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Wands, J. R.

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Wang, Q.

K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
[Crossref] [PubMed]

L. A. Lee, Z. W. Niu, and Q. Wang, “Viruses and Virus-like Protein Assemblies - Chemically Programmable Nanoscale Building Blocks,” Nano Res. 2(5), 349–364 (2009).
[Crossref]

L. A. Lee and Q. Wang, “Adaptations of Nanoscale Viruses and Other Protein Cages for Medical Applications,” Nanomedicine 2(3), 137–149 (2006).
[PubMed]

Wen, H.

A. F. Stein, J. Ilavsky, R. Kopace, E. E. Bennett, and H. Wen, “Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique,” Opt. Express 18(12), 13271–13278 (2010).
[Crossref] [PubMed]

H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
[Crossref] [PubMed]

H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
[Crossref] [PubMed]

Willis, A. F.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

Willits, D. A.

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

Wong, S. M.

Y. P. Ren, S. M. Wong, and L. Y. Lim, “Application of Plant Viruses as Nano Drug Delivery Systems,” Pharm. Res. 27(11), 2509–2513 (2010).
[Crossref] [PubMed]

Wörsdörfer, B.

B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed Evolution of a Protein Container,” Science 331(6017), 589–592 (2011).
[Crossref] [PubMed]

Woycechowsky, K. J.

B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed Evolution of a Protein Container,” Science 331(6017), 589–592 (2011).
[Crossref] [PubMed]

Wu, B.

B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
[Crossref]

Yildiz, I.

I. Yildiz, S. Shukla, and N. F. Steinmetz, “Applications of Viral Nanoparticles in Medicine,” Curr. Opin. Biotechnol. 22(6), 901–908 (2011).
[Crossref] [PubMed]

Young, M.

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

T. Douglas and M. Young, “Viruses: Making Friends with Old Foes,” Science 312(5775), 873–875 (2006).
[Crossref] [PubMed]

T. Douglas and M. Young, “Host–guest encapsulation of materials by assembled virus protein cages,” Nature 393(6681), 152–155 (1998).
[Crossref]

Young, M. J.

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

Zare, R. N.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
[Crossref] [PubMed]

Zhou, Z.

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

ACS Nano (3)

D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas, “Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza,” ACS Nano 7(4), 3036–3044 (2013).
[Crossref] [PubMed]

D. P. Patterson, P. E. Prevelige, and T. Douglas, “Nanoreactors by Programmed Enzyme Encapsulation Inside the Capsid of the Bacteriophage P22,” ACS Nano 6(6), 5000–5009 (2012).
[Crossref] [PubMed]

N. Stephanopoulos, G. J. Tong, S. C. Hsiao, and M. B. Francis, “Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells,” ACS Nano 4(10), 6014–6020 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Uchida, M. T. Klem, M. Allen, P. Suci, M. Flenniken, F. Gillitzer, Z. Varpness, L. O. Liepold, M. Young, and T. Douglas, “Biological Containers: Protein Cages as Multifunctional Nanoplatforms,” Adv. Mater. 19(8), 1025–1042 (2007).
[Crossref]

Analyst (Lond.) (1)

K. Li, H. G. Nguyen, X. B. Lu, and Q. Wang, “Viruses and Their Potential in Bioimaging and Biosensing Applications,” Analyst (Lond.) 135(1), 21–27 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

B. Wu, Y. Liu, C. Rose-Petruck, and G. J. Diebold, “X-ray spatial frequency heterodyne imaging,” Appl. Phys. Lett. 100(6), 061110 (2012).
[Crossref]

Biochim. Biophys. Acta (1)

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, “The ferritin superfamily: Supramolecular templates for materials synthesis,” Biochim. Biophys. Acta 1800(8), 834–845 (2010).
[Crossref] [PubMed]

Biophys. J. (1)

M. L. Galisteo and J. King, “Conformational Transformations in the Protein Lattice of Phage P22 Procapsids,” Biophys. J. 65(1), 227–235 (1993).
[Crossref] [PubMed]

Chem. Biol. (1)

M. L. Flenniken, D. A. Willits, A. L. Harmsen, L. O. Liepold, A. G. Harmsen, M. J. Young, and T. Douglas, “Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture,” Chem. Biol. 13(2), 161–170 (2006).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

M. L. Flenniken, L. O. Liepold, B. E. Crowley, D. A. Willits, M. J. Young, and T. Douglas, “Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture,” Chem. Commun. (Camb.) 28(4), 447–449 (2005).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

I. Yildiz, S. Shukla, and N. F. Steinmetz, “Applications of Viral Nanoparticles in Medicine,” Curr. Opin. Biotechnol. 22(6), 901–908 (2011).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial Harmonic Imaging of X-ray Scattering - Initial Results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, “Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles,” J. Am. Chem. Soc. 128(51), 16626–16633 (2006).
[Crossref] [PubMed]

P. D. Garimella, A. Datta, D. W. Romanini, K. N. Raymond, and M. B. Francis, “Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes,” J. Am. Chem. Soc. 133(37), 14704–14709 (2011).
[Crossref] [PubMed]

J. Mater. Chem. (2)

A. de la Escosura, R. J. M. Nolte, and J. J. L. M. Cornelissen, “Viruses and Protein Cages as Nanocontainers and Nanoreactors,” J. Mater. Chem. 19(16), 2274–2278 (2009).
[Crossref]

L. Shen, N. Bao, Z. Zhou, P. E. Prevelige, and A. Gupta, “Materials Desing Using Genetically Engineered Proteins,” J. Mater. Chem. 21(47), 18868–18876 (2011).
[Crossref]

Nano Lett. (2)

L. O. Liepold, M. J. Abedin, E. D. Buckhouse, J. A. Frank, M. J. Young, and T. Douglas, “Supramolecular Protein Cage Composite MR Contrast Agents with Extremely Efficient Relaxivity Properties,” Nano Lett. 9(12), 4520–4526 (2009).
[Crossref] [PubMed]

D. Rand, V. Ortiz, Y. Liu, Z. Derdak, J. R. Wands, M. Tatíček, and C. Rose-Petruck, “Nanomaterials for X-ray Imaging: Gold Nanoparticle Enhancement of X-ray Scatter Imaging of Hepatocellular Carcinoma,” Nano Lett. 11(7), 2678–2683 (2011).
[Crossref] [PubMed]

Nano Res. (1)

L. A. Lee, Z. W. Niu, and Q. Wang, “Viruses and Virus-like Protein Assemblies - Chemically Programmable Nanoscale Building Blocks,” Nano Res. 2(5), 349–364 (2009).
[Crossref]

Nanomedicine (3)

L. A. Lee and Q. Wang, “Adaptations of Nanoscale Viruses and Other Protein Cages for Medical Applications,” Nanomedicine 2(3), 137–149 (2006).
[PubMed]

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, “Nanoparticle PEGylation for imaging and therapy,” Nanomedicine 6(4), 715–728 (2011).
[Crossref] [PubMed]

E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, “Protracted elimination of gold nanoparticles from mouse liver,” Nanomedicine 5(2), 162–169 (2009).
[PubMed]

Nat. Chem. (1)

J. Lucon, S. Qazi, M. Uchida, G. J. Bedwell, B. LaFrance, P. E. Prevelige, and T. Douglas, “Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading,” Nat. Chem. 4(10), 781–788 (2012).
[Crossref] [PubMed]

Nature (1)

T. Douglas and M. Young, “Host–guest encapsulation of materials by assembled virus protein cages,” Nature 393(6681), 152–155 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Part. Fibre Toxicol. (1)

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, “Kuppfer cells are central in the removal of nanoparticles from the organism,” Part. Fibre Toxicol. 4(10), 1–7 (2007).
[PubMed]

Pharm. Res. (1)

Y. P. Ren, S. M. Wong, and L. Y. Lim, “Application of Plant Viruses as Nano Drug Delivery Systems,” Pharm. Res. 27(11), 2509–2513 (2010).
[Crossref] [PubMed]

Radiology (1)

H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology 251(3), 910–918 (2009).
[Crossref] [PubMed]

Science (3)

S. Kang and T. Douglas, “Biochemistry. Some Enzymes Just Need a Space of Their Own,” Science 327(5961), 42–43 (2010).
[Crossref] [PubMed]

B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed Evolution of a Protein Container,” Science 331(6017), 589–592 (2011).
[Crossref] [PubMed]

T. Douglas and M. Young, “Viruses: Making Friends with Old Foes,” Science 312(5775), 873–875 (2006).
[Crossref] [PubMed]

Soft Matter (1)

D. P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P. E. Prevelige, and T. Douglas, “Virus-like particle nanoreactors: programmed encapsulation of the termostable CelB glycosidase inside the P22 capsid,” Soft Matter 8(39), 10158–10166 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of the x-ray imaging setup.
Fig. 2
Fig. 2 X-ray scatter images are produced via numerical processing of an absorption-based x-ray image. An image with grid and sample placed in the x-ray beam path (top left) gives a convolution in the spatial frequency domain (top right) after Fourier transformation. Different peaks in the spatial frequency spectrum (surrounded by colored boxes) contain different information regarding how the sample scatters and absorbs incident x-radiation. The samples shown in the original image are glass tubes containing the P22 ES nanobubble suspension (middle) and water (right).
Fig. 3
Fig. 3 SFHI x-ray scatter signal enhancements over water for protein cage architectures and gold nanoparticles of comparable size. Protein cages were imaged intact and filled with perfluoropropane gas (nanobubble formulation, light blue bars); after sonication (yellow bars) and intact but devoid of gas (red bars). Error bars represent one standard deviation of the mean. The error bar for the x-ray scatter signal of the sonicated Ferritin nanobubble suspension is too small to be seen relative to the size of the x-ray scatter signals of the AuNPs and inflated nanobubbles.

Tables (3)

Tables Icon

Table 1 X-Ray Scatter Signal Enhancements of Nanoparticle Contrast Agents

Tables Icon

Table 2 Comparison of X-ray Absorbance and Scatter Signal Enhancements

Tables Icon

Table 3 Particle Number Densities in Contrast Agent Samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A = log 10 ( h 0 g 0 )
S = log ( h x / g x h 0 / g 0 )

Metrics