Abstract

We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering

Wei Wei, Lilin Yi, Yves Jaouën, Michel Morvan, and Weisheng Hu
Opt. Express 23(15) 19010-19021 (2015)

Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering

Assaf Wise, Moshe Tur, and Avi Zadok
Opt. Express 19(22) 21945-21955 (2011)

Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber

Takuo Tanemura, Yuichi Takushima, and Kazuro Kikuchi
Opt. Lett. 27(17) 1552-1554 (2002)

References

  • View by:
  • |
  • |
  • |

  1. R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuM7.
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. C. Pulikkaseril, L. A. Stewart, M. A. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express 19(9), 8458–8470 (2011).
    [Crossref] [PubMed]
  4. E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. Moulinard, and G. Froc, “Multi-band OFDM transmission at 100 Gbps with sub-band optical switching,” J. Lightwave Technol. 32(12), 2202–2219 (2014).
    [Crossref]
  5. X. H. Zou, M. Li, W. Pan, L. S. Yan, J. Azaña, and J. P. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
    [Crossref] [PubMed]
  6. X. Xue, H. Kim, Y. Xuan, J. Wang, D. Leaird, M. Qi, and A. Weiner, “First demonstration of a tunable single-bandpass photonic radiofrequency filter based on optical frequency comb from a microring,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu2A.7.
    [Crossref]
  7. M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
    [Crossref]
  8. Y. Qin, J. Q. Sun, M. D. Du, and J. F. Liao, “Variable single-passband narrowband optical filter based on forward stimulated interpolarization scattering in photonic crystal fiber,” Opt. Lett. 37(17), 3720–3722 (2012).
    [Crossref] [PubMed]
  9. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(17), 1552–1554 (2002).
    [Crossref] [PubMed]
  10. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photon. Res. 2(4), B18–B25 (2014).
    [Crossref]
  11. A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25(8), 2168–2174 (2007).
    [Crossref]
  12. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [Crossref] [PubMed]
  13. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16(11), 8026–8032 (2008).
    [Crossref] [PubMed]
  14. W. Wei, L. Yi, Y. Zhang, Y. Jaouen, Y. Song, Y. Dong, and W. Hu, “A bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4F.5.
    [Crossref]
  15. Y. S. Mamdem, E. Burov, L. A. de Montmorillon, Y. Jaouën, G. Moreau, R. Gabet, and F. Taillade, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” Opt. Express 20(2), 1790–1797 (2012).
    [Crossref] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).
  17. Y. Jaouën, G. Canat, Y. Sikali-Mamdem, R. Gabet, L. Lombard, and E. Burov, “Stimulated Brillouin scattering in specialty optical fibers: Importance of material, structure and manufacturing parameters,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3N.1.
    [Crossref]
  18. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [Crossref]
  19. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13(25), 10266–10271 (2005).
    [Crossref] [PubMed]
  20. P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.
    [Crossref]
  21. X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
    [Crossref]
  22. H. K. Kim and S. Chandrasekhar, “Dependence of in-band crosstalk penalty on the signal quality in optical network systems,” IEEE Photon. Technol. Lett. 12(9), 1273–1274 (2000).
    [Crossref]
  23. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1(5), 111–113 (1989).
    [Crossref]
  24. E. Awwad, Y. Jaouën, and G. R. Othman, “Polarization-time coding for PDL mitigation in long-haul PolMux OFDM systems,” Opt. Express 21(19), 22773–22790 (2013).
    [Crossref] [PubMed]

2014 (2)

2013 (3)

2012 (2)

2011 (2)

2009 (1)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[Crossref]

2002 (2)

2000 (1)

H. K. Kim and S. Chandrasekhar, “Dependence of in-band crosstalk penalty on the signal quality in optical network systems,” IEEE Photon. Technol. Lett. 12(9), 1273–1274 (2000).
[Crossref]

1989 (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1(5), 111–113 (1989).
[Crossref]

Abedin, K. S.

Awwad, E.

Azaña, J.

Baxter, G. W.

Ben-Ezra, Y.

Betoule, C.

Burov, E.

Chandrasekhar, S.

H. K. Kim and S. Chandrasekhar, “Dependence of in-band crosstalk penalty on the signal quality in optical network systems,” IEEE Photon. Technol. Lett. 12(9), 1273–1274 (2000).
[Crossref]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1(5), 111–113 (1989).
[Crossref]

Clavier, R.

de Montmorillon, L. A.

Delavaux, J. M.

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1(5), 111–113 (1989).
[Crossref]

Du, M. D.

Dumas-Feris, B.

Eyal, A.

Frisken, S.

Froc, G.

Gabet, R.

Giles, R. C.

X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[Crossref]

Goetz, P. G.

M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
[Crossref]

Gravey, P.

Grot, D.

Guillossou, T.

Jaouën, Y.

Kao, Y. H.

X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[Crossref]

Karaki, J.

Kikuchi, K.

Kim, H. K.

H. K. Kim and S. Chandrasekhar, “Dependence of in-band crosstalk penalty on the signal quality in optical network systems,” IEEE Photon. Technol. Lett. 12(9), 1273–1274 (2000).
[Crossref]

Kurashima, T.

Le Bidan, R.

Le Gall, T.

Li, M.

Liao, J. F.

Liu, X.

X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[Crossref]

Mamdem, Y. S.

Moreau, G.

Morvan, M.

Moulinard, M.

Movassaghi, M.

X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[Crossref]

Othman, G. R.

Pan, W.

Pincemin, E.

Poole, S.

Poudoulec, A.

Pruessner, M. W.

M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
[Crossref]

Pulikkaseril, C.

Qin, Y.

Rabinovich, W. S.

M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
[Crossref]

Roelens, M. A.

Sakamoto, T.

Schneider, T.

Shiraki, K.

Song, M.

Stern, Y.

Stewart, L. A.

Stievater, T. H.

M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
[Crossref]

Sun, J. Q.

Taillade, F.

Takushima, Y.

Tanemura, T.

Thouenon, G.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1(5), 111–113 (1989).
[Crossref]

Toulouse, J.

Tur, M.

Urick, V. J.

M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
[Crossref]

Van der Keur, M.

Wise, A.

Yamamoto, T.

Yan, L. S.

Yao, J.

Yao, J. P.

Yeniay, A.

Zadok, A.

Zhang, R.

Zhong, K.

Zia-Chahabi, O.

Zou, X. H.

Appl. Phys. Lett. (1)

M. W. Pruessner, T. H. Stievater, P. G. Goetz, W. S. Rabinovich, and V. J. Urick, “Cascaded integrated waveguide linear microcavity filters,” Appl. Phys. Lett. 103(1), 011105 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

X. Liu, Y. H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential Phase-Shift-Keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[Crossref]

H. K. Kim and S. Chandrasekhar, “Dependence of in-band crosstalk penalty on the signal quality in optical network systems,” IEEE Photon. Technol. Lett. 12(9), 1273–1274 (2000).
[Crossref]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1(5), 111–113 (1989).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (6)

Opt. Lett. (3)

Photon. Res. (1)

Other (6)

R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuM7.
[Crossref]

X. Xue, H. Kim, Y. Xuan, J. Wang, D. Leaird, M. Qi, and A. Weiner, “First demonstration of a tunable single-bandpass photonic radiofrequency filter based on optical frequency comb from a microring,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu2A.7.
[Crossref]

W. Wei, L. Yi, Y. Zhang, Y. Jaouen, Y. Song, Y. Dong, and W. Hu, “A bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4F.5.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).

Y. Jaouën, G. Canat, Y. Sikali-Mamdem, R. Gabet, L. Lombard, and E. Burov, “Stimulated Brillouin scattering in specialty optical fibers: Importance of material, structure and manufacturing parameters,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3N.1.
[Crossref]

P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The electrical spectral lines, pump lines and SBS gains before and after feedback.
Fig. 2
Fig. 2 The feedback compensation method.
Fig. 3
Fig. 3 Experimental setup. Inset (i) single sideband pump fp, SBS gain around fg, and ECL laser frequency fc, (ii) sweeping probe signal, (c) sweeping probe signal amplified by the SBS gain.
Fig. 4
Fig. 4 (a) The original SBS gain spectrum, (b) the phase response and (c) corresponding electrical spectral lines. (e) The SBS gain spectrum, (f) phase response and (d) corresponding electrical spectral lines after feedback process.
Fig. 5
Fig. 5 The electrical spectral lines, pump lines and the SBS gains in different cases.
Fig. 6
Fig. 6 4 SBS gain peaks with (a) equal intervals and (b) unequal intervals.
Fig. 7
Fig. 7 The natural SBS gain in (a) G-652 fiber (b) fiber with a single Brillouin peak.
Fig. 8
Fig. 8 The measured SBS spectra (a) original spectrum (b) after feedback process (c) utilizing nonlinearity management (d) utilizing nonlinearity management with single-peak fiber.
Fig. 9
Fig. 9 The 1-GHz SBS filter (a) after feedback process (b) utilizing nonlinearity management with single-peak fiber.
Fig. 10
Fig. 10 The (a) gain spectra and (b) phase responses of SBS filters with different bandwidths. (c) The corresponding pump power with different bandwidth.
Fig. 11
Fig. 11 The (a) passband ripple and (b) filter gain comparison among 3 conditions: only using feedback compensation (FB), using both FB and nonlinearity management (NM), using FB and NM in the single-peak fiber (SPF).
Fig. 12
Fig. 12 (a) Electrical spectrum of the SBS amplified signal with single-frequency modulation. (b) The relative SNR penalty with different pump bandwidth. (c) The relative SNR penalty with different pump power but the same bandwidth of 2 GHz.
Fig. 13
Fig. 13 The QPSK constellations (a) without and (b) with the SBS filter, (c) corresponding EVMs in two cases.
Fig. 14
Fig. 14 16-QAM constellations (a) without and (b) with the SBS filter, (c) corresponding EVMs in two cases.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P s ( 0 ) P s ( L ) = exp ( g B P 0 L e f f A e f f α L )
Gain ( d B ) P 0 ( P u m p _ a m p l i t u d e ) 2
Gain_ideal(dB) Gain_measured(dB) = Pump_amplitude_new 2 Pump_amplitude_old 2 = Electrical_amplitude_new 2 Electrical_amplitude_old 2

Metrics