Abstract

We report the first InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) monolithically grown on a Ge substrate by molecular beam epitaxy. The QD SLD exhibits a 3dB emission bandwidth of ~60 nm centered at 1252 nm with output power of 27 mW at room temperature. The 3dB bandwidth is very stable over the temperature range from 20 °C to 100 °C, which highlights the potential for integration with high performance ICs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4(8), 511–517 (2010).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
    [Crossref]
  3. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4(8), 527–534 (2010).
    [Crossref]
  4. D. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  5. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
    [Crossref]
  6. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  7. R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
    [Crossref]
  8. A. Eftekhar, Z. Xia, F. Ghasemi, and A. Adibi, “Ultra-compact multiplexed lab-on-chip sensors using miniaturized integrated photonic resonators,” IEEE Photon. Conf. 2012 1, 439–440 (2012).
    [Crossref]
  9. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
    [Crossref]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  11. S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
    [Crossref]
  12. S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
    [Crossref]
  13. J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
    [Crossref]
  14. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref] [PubMed]
  15. R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
    [Crossref]
  16. M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
    [Crossref]
  17. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
    [Crossref]
  18. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
    [Crossref]
  19. G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
    [Crossref]
  20. G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
    [Crossref]
  21. T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
    [Crossref]
  22. J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
    [Crossref]
  23. R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
    [Crossref]
  24. Z. Alferov, “Heterostructures for optoelectronics: history and modern trends,” Proc. IEEE 101, 2176–2182 (2013).
  25. H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
    [Crossref]
  26. D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
    [Crossref]
  27. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
    [Crossref] [PubMed]
  28. Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
    [Crossref]
  29. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
    [Crossref]
  30. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [Crossref] [PubMed]
  31. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
    [Crossref] [PubMed]
  32. A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
    [Crossref]
  33. H. Liu, “III–V quantum-dot materials and devices monolithically grown on Si substrates,” in Silicon-Based Nanomaterials, J. W. H. Li and Z. M. Wang, eds. (Springer, 2013), pp. 357–380.
  34. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
    [Crossref] [PubMed]
  35. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref]
  36. A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
    [Crossref]
  37. C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
    [Crossref]
  38. C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
    [Crossref]
  39. O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,” Appl. Phys. Lett. 80(15), 2758 (2002).
    [Crossref]
  40. Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).
  41. M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
    [Crossref]
  42. T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
    [Crossref]
  43. H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
    [Crossref]
  44. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
    [Crossref]
  45. K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
    [Crossref] [PubMed]
  46. S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
    [Crossref]
  47. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
    [Crossref]

2014 (4)

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

2013 (3)

Z. Alferov, “Heterostructures for optoelectronics: history and modern trends,” Proc. IEEE 101, 2176–2182 (2013).

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

2012 (7)

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
[Crossref]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

2011 (2)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

2010 (6)

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4(8), 511–517 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4(8), 527–534 (2010).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[Crossref]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
[Crossref]

2009 (3)

Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).

D. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

2008 (3)

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

2006 (3)

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

2005 (3)

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

2004 (2)

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

2002 (1)

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,” Appl. Phys. Lett. 80(15), 2758 (2002).
[Crossref]

2000 (1)

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

1998 (3)

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1989 (1)

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

1986 (2)

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Akatsu, T.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Alferov, Z.

Z. Alferov, “Heterostructures for optoelectronics: history and modern trends,” Proc. IEEE 101, 2176–2182 (2013).

Allibert, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Appelman, H.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Arakawa, Y.

Asada, M.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

Badcock, T. J.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Badylevich, M.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

Beanland, R.

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Benamara, M.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Bhattacharya, P.

C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
[Crossref]

Bordel, D.

Borghs, G.

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Boussagol, A.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Bowers, J. E.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4(8), 511–517 (2010).
[Crossref]

Brammertz, G.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Bulsara, M.

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

Burkhart, G.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Campidelli, Y.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Carlin, J. A.

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

Caymax, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Chen, S.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Chen, S. M.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

Childs, D.

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Childs, D. T.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Childs, D. T. D.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).

Chung, Y. C.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Clavelier, L.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Currie, M. T.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

D’Hondt, M.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

David, J. P. R.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Degroote, S.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Deguet, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Demeester, P.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

Deppe, D. G.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,” Appl. Phys. Lett. 80(15), 2758 (2002).
[Crossref]

Depreter, B.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

Dorogan, V. G.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Fiore, A.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Fischer, R.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Fitzgerald, E. A.

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freisem, S.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Frost, T.

C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[Crossref]

Gossard, A. C.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Groom, K.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

Groom, K. M.

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Guimard, D.

Guo, W.

C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
[Crossref]

Gutierrez, M.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Hartmann, J.-M.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heyns, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

Hogg, R.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

Hogg, R. A.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[Crossref]

Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Hopkinson, M.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
[Crossref]

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hugues, M.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

Iwamoto, S.

Izotov, A.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

Jiang, Q.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
[Crossref]

Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

Jin, C. Y.

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Jung, D. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Kennedy, K.

Kernevez, N.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Keyes, B. M.

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

Kimerling, L. C.

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4(8), 527–534 (2010).
[Crossref]

Kopp, W.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Kovsh, A.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Kveder, V.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

Langdo, T. A.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Larenzo, J.

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Lee, A.

Lee, A. D.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Lee, C.-H.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Lee, C.-S.

C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
[Crossref]

Leitz, C. W.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Letertre, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Leys, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Li, L.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4(8), 511–517 (2010).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lipson, M.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Liu, A. W. K.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, H.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

Liu, H. Y.

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Liu, J.

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4(8), 527–534 (2010).
[Crossref]

Loup, V.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Lu, Z. H.

Lubyshev, D.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Lv, X. Q.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[Crossref]

Matcher, S. J.

Mazen, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Mazur, Y.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Mazur, Y. I.

Mazure, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

McGougan, D.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Meuris, M.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

Michel, J.

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4(8), 527–534 (2010).
[Crossref]

Mijlemans, P.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

Mikhrin, S.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Miller, D.

D. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Miyake, Y.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

Miyamoto, Y.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

Moerman, I.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

Mols, Y.

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Morkoc, H.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Mowbray, D. J.

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Ng, J. S.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Occhi, L.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Orchard, J. R.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Ozgur, G.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Pion, M.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Pozzi, F.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ramsay, A. J.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[Crossref]

Rice, R.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Richtarch, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Ringel, S. A.

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

Robbins, D. J.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Rossetti, M.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Rouchon, D.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Salamo, G.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Salamo, G. J.

Samavedam, S. B.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

Sanchez, L.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Sánchez, M.

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Schroter, W.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seeds, A.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

Seeds, A. J.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Seibt, M.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

Sellers, I. R.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Shavritranuruk, K.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,” Appl. Phys. Lett. 80(15), 2758 (2002).
[Crossref]

Shin, S. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Signamarcheix, T.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Skolnick, M. S.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Smowton, P.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Soref, R.

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

Specht, A.

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

Steinman, E.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suematsu, Y.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sys, C.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

Tanabe, K.

Tang, M.

Tang, M. C.

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[Crossref]

Tutu, F.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

Van Steenbergen, J.

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

Vélez, C.

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Wada, O.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

Wang, T.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

Wang, Z. G.

Wu, J.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Yu, Z.-Q. Q.

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

Zhang, C.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Zhang, Y.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Zhang, Z.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Zhang, Z. Y.

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[Crossref]

Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).

Zhou, K.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

Zhou, K. J.

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

ACS Photon. (1)

S. M. Chen, M. C. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1(7), 638–642 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (10)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

C. Y. Jin, H. Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. 93(16), 161103 (2008).
[Crossref]

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,” Appl. Phys. Lett. 80(15), 2758 (2002).
[Crossref]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett. 100(4), 041118 (2012).
[Crossref]

R. Fischer, W. Kopp, H. Morkoc, M. Pion, A. Specht, G. Burkhart, H. Appelman, D. McGougan, and R. Rice, “Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si,” Appl. Phys. Lett. 48(20), 1360–1361 (1986).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72(14), 1718–1720 (1998).
[Crossref]

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84(12), 2106 (2004).
[Crossref]

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,” Appl. Phys. Lett. 76(14), 1884–1886 (2000).
[Crossref]

Electron. Lett. (2)

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 µm,” Electron. Lett. 46(4), 295 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

R. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900209 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Rossetti, L. Li, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

C.-S. Lee, T. Frost, W. Guo, and P. Bhattacharya, “High temperature stable operation of 1.3-um quantum-dot laser integrated with single-mode tapered SiN waveguide,” IEEE Photon. Technol. Lett. 24(11), 918–920 (2012).
[Crossref]

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

J. Appl. Phys. (2)

R. Beanland, M. Sánchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Q. Jiang, Z. Y. Zhang, D. T. D. Childs, and R. A. Hogg, “Analysis of 1.2 μm InGaAs/GaAs quantum dot laser for high power applications,” J. Appl. Phys. 106(7), 073102 (2009).

J. Cryst. Growth (2)

G. Brammertz, Y. Mols, S. Degroote, M. Leys, J. Van Steenbergen, G. Borghs, and M. Caymax, “Selective epitaxial growth of GaAs on Ge by MOCVD,” J. Cryst. Growth 297(1), 204–210 (2006).
[Crossref]

M. D’Hondt, Z.-Q. Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, “High quality InGaAs/AlGaAs lasers grown on Ge substrates,” J. Cryst. Growth 195(1-4), 655–659 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of p-doped 1.3µm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Laser Photon. Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6(4), 463–487 (2012).
[Crossref]

Mater. Sci. Semicond. Process. (1)

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4–5), 444–448 (2006).
[Crossref]

Nat. Photon. (4)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5(7), 416–419 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4(8), 511–517 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4(8), 527–534 (2010).
[Crossref]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Proc. IEEE (2)

Z. Alferov, “Heterostructures for optoelectronics: history and modern trends,” Proc. IEEE 101, 2176–2182 (2013).

D. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

Thin Solid Films (1)

G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films 517(1), 148–151 (2008).
[Crossref]

Other (2)

H. Liu, “III–V quantum-dot materials and devices monolithically grown on Si substrates,” in Silicon-Based Nanomaterials, J. W. H. Li and Z. M. Wang, eds. (Springer, 2013), pp. 357–380.

A. Eftekhar, Z. Xia, F. Ghasemi, and A. Adibi, “Ultra-compact multiplexed lab-on-chip sensors using miniaturized integrated photonic resonators,” IEEE Photon. Conf. 2012 1, 439–440 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic structure of QD SLD grown on a p + Ge substrate; (b) TEM image of Ge/GaAs interface; (c) Single repeat of schematic of modulation Be-doped DWELL structure; (d) TEM image of InAs/InGaAs DWELL active region.
Fig. 2
Fig. 2 Photoluminescence characteristics of InAs/GaAs QDs grown on Ge substrate at room temperature. The inset shows 1μm × 1μm atomic force microscope image of InAs quantum dots.
Fig. 3
Fig. 3 Schematic structure of QDSLD grown on Ge substrate.
Fig. 4
Fig. 4 (a), Light-current characteristics of Be-doped QDSLED operating under pulsed condition at room temperature from 0 to 3 A; Inset, Spectral characteristics correspondent to the LI curve; (b), Full width half maximum bandwidth and peak wavelength of QDSLED from 500mA to 3000mA, respectively.
Fig. 5
Fig. 5 Temperature dependent L-I curves measured from 20 °C to 100 °C of 3-mm cavity devices for QD SLD. The inset shows the spectral characteristics correspondent to the different temperature at injection of 2000 mA.

Metrics