Abstract

A Faraday isolator based on a new magneto-optical medium, TSAG (terbium scandium aluminum garnet) crystal, has been constructed and investigated experimentally. The device provides an isolation ratio of more than 30 dB at 500 W laser power. It is shown that this medium can be used in Faraday isolators for kilowatt-level laser powers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Faraday rotator based on TSAG crystal with <001> orientation

Ryo Yasuhara, Ilya Snetkov, Aleksey Starobor, Evgeniy Mironov, and Oleg Palashov
Opt. Express 24(14) 15486-15493 (2016)

High-power Faraday isolators based on TAG ceramics

Dmitry Zheleznov, Aleksey Starobor, Oleg Palashov, Chong Chen, and Shengming Zhou
Opt. Express 22(3) 2578-2583 (2014)

TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov
Opt. Express 22(4) 4144-4151 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
    [Crossref] [PubMed]
  2. M. J. Weber, “Faraday rotator materials for laser systems,” Proc. SPIE 681, 75–90 (1987).
    [Crossref]
  3. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
    [Crossref]
  4. M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floatingzone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
    [Crossref]
  5. S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
    [Crossref]
  6. H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
    [Crossref]
  7. D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
    [Crossref] [PubMed]
  8. D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
    [Crossref] [PubMed]
  9. W. DeSorbo, “Magneto-Optical Properties of Terbium Aluminum Garnet at Liquid-Helium Temperatures,” Phys. Rev. 158(3), 839–842 (1967).
    [Crossref]
  10. S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
    [Crossref]
  11. V. Kochurikhin and Y. Furukawa, “Czochralski growth and characterization of new oxide crystals for optical isolators,” presented at the 2010 International Symposium on Crystal Growth, Hanyang University, Seoul, Korea, Nov. 7–9, 2010.
  12. I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
    [Crossref]
  13. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
    [Crossref]
  14. A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
    [Crossref]
  15. E. A. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, 2010).
  16. I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
    [Crossref]

2014 (3)

2013 (1)

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

2011 (3)

2009 (1)

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[Crossref]

2007 (1)

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

2004 (1)

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floatingzone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

1999 (1)

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

1997 (1)

S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
[Crossref]

1987 (1)

M. J. Weber, “Faraday rotator materials for laser systems,” Proc. SPIE 681, 75–90 (1987).
[Crossref]

1967 (1)

W. DeSorbo, “Magneto-Optical Properties of Terbium Aluminum Garnet at Liquid-Helium Temperatures,” Phys. Rev. 158(3), 839–842 (1967).
[Crossref]

Chen, C.

DeSorbo, W.

W. DeSorbo, “Magneto-Optical Properties of Terbium Aluminum Garnet at Liquid-Helium Temperatures,” Phys. Rev. 158(3), 839–842 (1967).
[Crossref]

Fujii, T.

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floatingzone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

Ganschow, S.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
[Crossref]

Geho, M.

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floatingzone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

Gerhardt, A.

S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
[Crossref]

Katin, E. V.

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

Khazanov, E. A.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[Crossref]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

Klimm, D.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

Lin, H.

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Mironov, E. A.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

Mukhin, I. B.

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[Crossref]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

Palashov, O.

Palashov, O. V.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[Crossref]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

Reiche, P.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
[Crossref]

Sekijima, T.

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floatingzone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

Snetkov, I. L.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

Starobor, A.

Starobor, A. V.

Teng, H.

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Uecker, R.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
[Crossref]

Voitovich, A. V.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[Crossref]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

Weber, M. J.

M. J. Weber, “Faraday rotator materials for laser systems,” Proc. SPIE 681, 75–90 (1987).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

Zhou, S.

Zhou, S. M.

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Cryst. Res. Technol. (1)

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

J. Cryst. Growth (1)

M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floatingzone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Phys. Rev. (1)

W. DeSorbo, “Magneto-Optical Properties of Terbium Aluminum Garnet at Liquid-Helium Temperatures,” Phys. Rev. 158(3), 839–842 (1967).
[Crossref]

Proc. SPIE (2)

S. Ganschow, A. Gerhardt, P. Reiche, and R. Uecker, “Terbium Scandium Aluminum Garnet a new efficient material for Faraday rotators?” Proc. SPIE 3178, 55–58 (1997).
[Crossref]

M. J. Weber, “Faraday rotator materials for laser systems,” Proc. SPIE 681, 75–90 (1987).
[Crossref]

Quantum Electron. (2)

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolatorfor kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[Crossref]

Other (2)

E. A. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, 2010).

V. Kochurikhin and Y. Furukawa, “Czochralski growth and characterization of new oxide crystals for optical isolators,” presented at the 2010 International Symposium on Crystal Growth, Hanyang University, Seoul, Korea, Nov. 7–9, 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental sample of the TSAG crystal 6 mm in diameter and 7 mm in length.
Fig. 2
Fig. 2 Schematic of experimental measurements of thermal depolarization: 1 – ytterbium fiber laser, 2 – telescope, 3 – calcite wedge, 4 – MOE, 5 – magnetic system, 6 – quartz wedges, 7 – absorber, 8 – Glan prism, 9 – measuring lens, 10 – CCD-camera.
Fig. 3
Fig. 3 Intensity of the depolarized component of radiation (a) and laser beam (b) used in experiment.
Fig. 4
Fig. 4 Thermally induced depolarization versus radiation power in Faraday isolators based on TSAG crystal (diamonds) and TGG crystal (squares).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = P d / P 0 ,
I = 10 lg γ
γ T ( α Q L P λ κ ) 2

Metrics