Abstract

We present a full-wave finite difference time domain (FDTD) study of a coupled resonator optical waveguide (CROW) rotation sensor consisting of 8 doubly degenerate ring resonators. First we demonstrate the formation of rotation-induced gap in the spectral pass-band of the CROW and show the existence of a dead-zone at low rotation rates which is mainly due to its finite size and partly because of the individual cavities losses. In order to overcome this deficiency, we modulate periodically the refractive indices of the resonators to effectively move CROW’s operating point away from this dead-zone. Finally, we analyze the performance of a structurally disordered CROW to model the unavoidable fabrication errors and inaccuracies. We show that in some cases structural disorder can increase the sensitivity to rotation by breaking the degeneracy of the resonators, thus making such CROW even more sensitive to rotation than its unperturbed ideal counterpart.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity

Ben Z. Steinberg, Jacob Scheuer, and Amir Boag
J. Opt. Soc. Am. B 24(5) 1216-1224 (2007)

Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide

Christopher Sorrentino, John R. E. Toland, and Christopher P. Search
Opt. Express 20(1) 354-363 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Z. Steinberg, “Rotating photonic crystals: A medium for compact optical gyroscopes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056621 (2005).
    [Crossref] [PubMed]
  2. D. Kalantarov and C. Search, “Effect of input-output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes,” J. Opt. Soc. Am. B 30(2), 377–381 (2013).
    [Crossref]
  3. C. Sorrentino, J. R. E. Toland, and C. P. Search, “Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20(1), 354–363 (2012).
    [Crossref] [PubMed]
  4. J. R. E. Toland, Z. A. Kaston, C. Sorrentino, and C. P. Search, “Chirped area coupled resonator optical waveguide gyroscope,” Opt. Lett. 36(7), 1221–1223 (2011).
    [Crossref] [PubMed]
  5. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
    [Crossref] [PubMed]
  6. M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser and Photonics Reviews 3(5), 452–465 (2009).
    [Crossref]
  7. M. Terrel, M. Digonnet, and S. Fan, “Performance limitations of coupled-resonator optical waveguide gyroscope,” Journal. of Lighwave Tech. 27(1), 47–54 (2009).
    [Crossref]
  8. G. Sagnac, “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme,” C. R. Acad. Sci. 95, 708–710 (1913).
  9. B. Z. Steinberg and A. Boag, “Splitting of microcavity degenerate modes in rotating photonic crystals – the miniature optical gyroscopes,” J. Opt. Soc. Am. B 24(1), 142 (2007).
    [Crossref]
  10. B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24(5), 1216–1224 (2007).
  11. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [Crossref] [PubMed]
  12. C. Peng, R. Hui, X. Luo, Z. Li, and A. Xu, “Finite-difference time-domain algorithm for modeling Sagnac effect in rotating optical elements,” Opt. Express 16(8), 5227–5240 (2008).
    [Crossref] [PubMed]
  13. R. Sarma, H. Noh, and H. Cao, “Wavelength-scale microdisks as optical gyroscopes: a finite-difference time-domain study,” J. Opt. Soc. Am. B 29(7), 1648–1657 (2012).
    [Crossref]
  14. R. Novitski, J. Scheuer, and B. Z. Steinberg, “Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 023303 (2013).
    [Crossref] [PubMed]
  15. Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
    [Crossref] [PubMed]
  16. M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
    [Crossref] [PubMed]
  17. P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003).
    [Crossref]
  18. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003).
    [Crossref]
  19. R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled resonator optical waveguide rotation sensor,” Phys. Rev. A 85(2), 023813 (2012).
    [Crossref]
  20. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
    [Crossref]
  21. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  22. H. Levinson, Principles of Lithography, 3rd Edition (SPIE, 2011).

2013 (2)

D. Kalantarov and C. Search, “Effect of input-output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes,” J. Opt. Soc. Am. B 30(2), 377–381 (2013).
[Crossref]

R. Novitski, J. Scheuer, and B. Z. Steinberg, “Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 023303 (2013).
[Crossref] [PubMed]

2012 (5)

R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled resonator optical waveguide rotation sensor,” Phys. Rev. A 85(2), 023813 (2012).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

C. Sorrentino, J. R. E. Toland, and C. P. Search, “Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20(1), 354–363 (2012).
[Crossref] [PubMed]

R. Sarma, H. Noh, and H. Cao, “Wavelength-scale microdisks as optical gyroscopes: a finite-difference time-domain study,” J. Opt. Soc. Am. B 29(7), 1648–1657 (2012).
[Crossref]

2011 (1)

2009 (2)

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser and Photonics Reviews 3(5), 452–465 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance limitations of coupled-resonator optical waveguide gyroscope,” Journal. of Lighwave Tech. 27(1), 47–54 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (2)

2005 (1)

B. Z. Steinberg, “Rotating photonic crystals: A medium for compact optical gyroscopes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056621 (2005).
[Crossref] [PubMed]

2004 (2)

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[Crossref] [PubMed]

2003 (2)

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003).
[Crossref]

1913 (1)

G. Sagnac, “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme,” C. R. Acad. Sci. 95, 708–710 (1913).

Boag, A.

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Cao, H.

Digonnet, M.

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser and Photonics Reviews 3(5), 452–465 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance limitations of coupled-resonator optical waveguide gyroscope,” Journal. of Lighwave Tech. 27(1), 47–54 (2009).
[Crossref]

Ding, J.

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

Fan, S.

M. Terrel, M. Digonnet, and S. Fan, “Performance limitations of coupled-resonator optical waveguide gyroscope,” Journal. of Lighwave Tech. 27(1), 47–54 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser and Photonics Reviews 3(5), 452–465 (2009).
[Crossref]

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Huang, Y.

Hui, R.

Jeong, D.-Y.

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

Kalantarov, D.

Kaston, Z. A.

Khoo, I. C.

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

Kokubun, Y.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Li, Z.

Luo, X.

Manolatou, C.

Melloni, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Mookherjea, S.

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Nawrodtm, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Noh, H.

Novitski, R.

R. Novitski, J. Scheuer, and B. Z. Steinberg, “Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 023303 (2013).
[Crossref] [PubMed]

R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled resonator optical waveguide rotation sensor,” Phys. Rev. A 85(2), 023813 (2012).
[Crossref]

Paloczi, G. T.

Peng, C.

Poon, J. K. S.

Popovic, M.

Rabiei, P.

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

Sagnac, G.

G. Sagnac, “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme,” C. R. Acad. Sci. 95, 708–710 (1913).

Sarma, R.

Scheuer, J.

R. Novitski, J. Scheuer, and B. Z. Steinberg, “Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 023303 (2013).
[Crossref] [PubMed]

R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled resonator optical waveguide rotation sensor,” Phys. Rev. A 85(2), 023813 (2012).
[Crossref]

B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24(5), 1216–1224 (2007).

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[Crossref] [PubMed]

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[Crossref] [PubMed]

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Search, C.

Search, C. P.

Sorrentino, C.

Steier, W. H.

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

Steinberg, B. Z.

R. Novitski, J. Scheuer, and B. Z. Steinberg, “Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 023303 (2013).
[Crossref] [PubMed]

R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled resonator optical waveguide rotation sensor,” Phys. Rev. A 85(2), 023813 (2012).
[Crossref]

B. Z. Steinberg and A. Boag, “Splitting of microcavity degenerate modes in rotating photonic crystals – the miniature optical gyroscopes,” J. Opt. Soc. Am. B 24(1), 142 (2007).
[Crossref]

B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24(5), 1216–1224 (2007).

B. Z. Steinberg, “Rotating photonic crystals: A medium for compact optical gyroscopes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056621 (2005).
[Crossref] [PubMed]

Terrel, M.

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser and Photonics Reviews 3(5), 452–465 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance limitations of coupled-resonator optical waveguide gyroscope,” Journal. of Lighwave Tech. 27(1), 47–54 (2009).
[Crossref]

Toland, J. R. E.

Watts, M.

Xu, A.

Yamagata, S.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003).
[Crossref]

Yanagase, Y.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003).
[Crossref]

Yariv, A.

Ye, Y.-H.

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

Zhang, Q. M.

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodtm, “Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

C. R. Acad. Sci. (1)

G. Sagnac, “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme,” C. R. Acad. Sci. 95, 708–710 (1913).

Electron. Lett. (1)

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

J. Opt. Soc. Am. B (4)

Journal. of Lighwave Tech. (1)

M. Terrel, M. Digonnet, and S. Fan, “Performance limitations of coupled-resonator optical waveguide gyroscope,” Journal. of Lighwave Tech. 27(1), 47–54 (2009).
[Crossref]

Laser and Photonics Reviews (1)

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser and Photonics Reviews 3(5), 452–465 (2009).
[Crossref]

Laser Photonics Rev. (1)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled resonator optical waveguide rotation sensor,” Phys. Rev. A 85(2), 023813 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

B. Z. Steinberg, “Rotating photonic crystals: A medium for compact optical gyroscopes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056621 (2005).
[Crossref] [PubMed]

R. Novitski, J. Scheuer, and B. Z. Steinberg, “Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(2), 023303 (2013).
[Crossref] [PubMed]

Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056604 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[Crossref] [PubMed]

Other (1)

H. Levinson, Principles of Lithography, 3rd Edition (SPIE, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 CROW consisting of 8 ring resonators and rotating at the rate Ω. The resonance frequency shift in each resonator due to rotation is ± δω(Ω). Alternatively, the effect of rotation can be mimicked in a static CROW by modulating the indices of the resonators by ± Δn, thus shifting the operating point (or bias) from null rotation rate. The first and the last rings have higher indices (different color) in order to reduce CIFS to allow more symmetric frequency response.
Fig. 2
Fig. 2 Spectrum of an ideal unmodulated CROW (Δn = 0) for different rotation rates; (a) drop (b) through.
Fig. 3
Fig. 3 Response to rotation of an ideal CROW without modulation (blue, Δn = 0), and with modulation (green, Δn = 7.74 × 10−4). All values normalized to the value with Δn = 0 and Ω = 0; (a) drop (b) through.
Fig. 4
Fig. 4 Spectrum of an ideal modulated CROW using Δn = 7.74 × 10−4 for different rotation rates; (a) drop (b) through.
Fig. 5
Fig. 5 Spectrum of an unmodulated (Δn = 0) CROW rotating at Ω = 10 × Ω0 (blue), and a modulated static CROW with Ω = 0 and Δn = 7.74 × 10−4 (green); (a) drop (b) through.
Fig. 6
Fig. 6 Relative permittivity of a section of a ring constituting the CROW; (a) ideal CROW (b) instance #1 of a randomly disordered CROW.
Fig. 7
Fig. 7 Response to rotation of 4 different random realizations of a disordered CROW; (a) drop (b) through.
Fig. 8
Fig. 8 (a) Drop response calculated by the tight-binding approach [19] for a lossless CROW with different number of rings. (b) The corresponding sensitivity.
Fig. 9
Fig. 9 (a) Drop response calculated by the tight-binding approach [19] for a CROW of 8 rings with different round-trip power loss rates in a single ring. (b) The corresponding sensitivity.

Tables (1)

Tables Icon

Table 1 Maximal absolute slopes and ratio max(D)/max(Dideal) for drop response ideal and disordered CROWs

Metrics