Abstract

We demonstrate both experimentally and theoretically that a two-layer dielectric structure can provide collimation and enhanced transmission of a Gaussian beam passing through it. This is due to formation of surface localized states along the layered structure and the coupling of these states to outgoing propagating waves. A system of multiple cascading two-layers can sustain the beaming for large propagation distances.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures

Anna C. Tasolamprou, Lei Zhang, Maria Kafesaki, Thomas Koschny, and Costas M. Soukoulis
Opt. Express 23(11) 13972-13982 (2015)

Frequency dependent steering with backward leaky waves via photonic crystal interface layer

Evrim Colak, Humeyra Caglayan, Atilla Ozgur Cakmak, Alessandro Della Villa, Filippo Capolino, and Ekmel Ozbay
Opt. Express 17(12) 9879-9890 (2009)

Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations

Andriy E. Serebryannikov, Evrim Colak, Thore Magath, and Ekmel Ozbay
J. Opt. Soc. Am. A 33(12) 2450-2458 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [Crossref] [PubMed]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [Crossref] [PubMed]
  3. J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Phot. and Nano. - Fund. and Appl. 1, 55–62 (2003).
  4. A. Çetin, K. Güven, and O. Müstecaplioglu, “Active control of focal length and beam deflection in a metallic nanoslit array lens with multiple sources,” Opt. Lett. 35, 1980–1982 (2010).
    [Crossref] [PubMed]
  5. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys. 104, 073108 (2008).
    [Crossref]
  6. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
    [Crossref]
  7. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
    [Crossref]
  8. G. Arjavalingam, W. Robertson, R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528–530 (1993).
    [Crossref] [PubMed]
  9. F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
    [Crossref]
  10. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
    [Crossref] [PubMed]
  11. R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
    [Crossref]
  12. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
    [Crossref]
  13. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
    [Crossref] [PubMed]
  14. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
    [Crossref]
  15. W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Phys. Lett. 93, 201101 (2008).
    [Crossref]
  16. “ https://www.comsol.com ”.
  17. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [Crossref] [PubMed]
  18. P. Markos and C. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

2010 (1)

2008 (2)

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys. 104, 073108 (2008).
[Crossref]

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Phys. Lett. 93, 201101 (2008).
[Crossref]

2007 (2)

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

2006 (1)

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

2005 (2)

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[Crossref] [PubMed]

2004 (1)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

2003 (2)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Phot. and Nano. - Fund. and Appl. 1, 55–62 (2003).

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

1996 (1)

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

1993 (1)

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Arjavalingam, G.

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Bravo-Abad, J.

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Phot. and Nano. - Fund. and Appl. 1, 55–62 (2003).

Brommer, K.

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Bulu, I.

Caglayan, H.

Çetin, A.

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Dai, W.

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Phys. Lett. 93, 201101 (2008).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Fang, A.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Garca-Vidal, F.

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Phot. and Nano. - Fund. and Appl. 1, 55–62 (2003).

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Güven, K.

Halevi, P.

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Joannopoulos, J.

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Kim, H.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

Koschny, T.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Lee, B.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Markos, P.

P. Markos and C. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Martn-Moreno, L.

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Phot. and Nano. - Fund. and Appl. 1, 55–62 (2003).

Meade, R.

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

Moussa, R.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Müstecaplioglu, O.

Ozbay, E.

Ramos-Mendieta, F.

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

Rappe, A.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Robertson, W.

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Soukoulis, C.

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Phys. Lett. 93, 201101 (2008).
[Crossref]

P. Markos and C. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

Soukoulis, C. M.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Tuttle, G.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Wang, B.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Zhang, L.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Appl. Phys. Lett. (3)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Phys. Lett. 93, 201101 (2008).
[Crossref]

J. Appl. Phys. (1)

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys. 104, 073108 (2008).
[Crossref]

Opt. Lett. (3)

Phot. and Nano. - Fund. and Appl. (1)

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Phot. and Nano. - Fund. and Appl. 1, 55–62 (2003).

Phys. Rev. B (3)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Phys. Rev. Lett. (3)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Solid State Commun. (1)

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

Other (2)

“ https://www.comsol.com ”.

P. Markos and C. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a double bilayer structure. Each bilayer is composed of a surface layer of dielectric cylindrical rods, diameter D = 1.83 mm, and a grating layer made of rectangular rods, side length L = 3.15 mm. (b) Experimental configuration.

Fig. 2
Fig. 2

(a) Band structure of an infinite layer of cylindrical rods (structure drawing on top of the plot). The black line shows the light line and the red curve corresponds to the dispersion of the surface mode. Inset shows the field distribution of the surface mode. (b) Profile of the local field for the finite surface layer. The structure consists of the finite surface layer and a single square scatterer placed before the surface layer, at distance equal to α (structure drawing on top of the plot). The local field is calculated at a short distance, equal to α/2, behind the surface layer within the frequency range of 5–13 GHz.

Fig. 3
Fig. 3

Experimental 2D strength plot of the outgoing field at (a) 11.55 GHz and (b) 12.04 GHz, (c) and (d) corresponding numerical simulations for the one bilayer case. (e) Experimental x cross section strength profile of the field measured at the y end of the experimental table (0.7 m from the sample) in the range 10–12.5 GHz and (f) corresponding simulation.

Fig. 4
Fig. 4

Normalized transmission of the two bilayer structure with respect to the separation distance d, experimental (red curve), simulated (black curve) and fitted data (blue curve).

Fig. 5
Fig. 5

(a) Experimental x cross section strength profile of the field measured at the end of the experimental table within the range of 10–12.5 GHz and (b) correspond numerical simulation. (c) Experimental 2D strength plot of the outgoing field at the optimum frequency 11.55 GHz and (b) corresponding numerical simulations for the two bilayer case.

Fig. 6
Fig. 6

Simulation of the 2D field strength for the case of (a) two bilayer and (b) four bilayer structure. (c) Normalized x cross section field distribution for the two and four bilayer case at a propagation distance of 100λ.

Metrics