Abstract

To improve the accuracy of digital sun sensors (DSS) to the level of arc-second while maintaining a large field of view (FOV), a multiplexing image detector method was proposed. Based on a single multiplexing detector, a dedicated mask with different groups of encoding apertures was utilized to divide the whole FOV into several sub-FOVs, every of which would cover the whole detector. In this paper, we present a novel method to analyze and optimize the diffraction effect and the parameters of the aperture patterns in the dedicated mask, including the aperture size, focal length, FOV, as well as the clearance between adjacent apertures. Based on the simulation, a dedicated mask with 13 × 13 various groups of apertures was designed and fabricated; furthermore a prototype of DSS with a single multiplexing detector and 13 × 13 sub-FOVs was built and test. The results indicated that the DSS prototype could reach the accuracy of 5 arc-second (3σ) within a 105° × 105° FOV. Using this method, the sun sensor still keeps the original features of low power consumption, small size and high dynamic range when it realizes both high accuracy and large FOV.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An implementation method based on ERS imaging mode for sun sensor with 1 kHz update rate and 1″ precision level

Minsong Wei, Fei Xing, and Zheng You
Opt. Express 21(26) 32524-32533 (2013)

Precision enhancement method for multiplexing image detector-based sun sensor with varying and coded apertures

Geng Wang, Fei Xing, Minsong Wei, and Zheng You
Appl. Opt. 54(35) 10467-10472 (2015)

Resolution improvement of integral imaging based on time multiplexing sub-pixel coding method on common display panel

Yujiao Chen, Xiaorui Wang, Jianlei Zhang, Shuo Yu, Qiping Zhang, and Bingtao Guo
Opt. Express 22(15) 17897-17907 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Rufino and M. Grassi, “Multi-aperture CMOS sun sensor for microsatellite attitude determination,” Sensors (Basel) 9(6), 4503–4524 (2009).
    [Crossref] [PubMed]
  2. G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
    [Crossref]
  3. T. Sun, F. Xing, Z. You, and M. Wei, “Motion-blurred star acquisition method of the star tracker under high dynamic conditions,” Opt. Express 21(17), 20096–20110 (2013).
    [Crossref] [PubMed]
  4. S. Mobasser and C. C. Liebe, “MEMS based sun sensor on a chip,” in Proceedings of IEEE Conference on Control Applications, (Institute of Electrical and Electronics Engineers, Istanbul, 2003), 1483–1487.
    [Crossref]
  5. C. de Boom, J. Leijtens, and N. Van Der Heiden, “Micro digital sun sensor: a matchbox miracle,” in Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems, (ESA, Loutraki, 2006), 202–207.
  6. C. De Boom, J. Leijtens, and N. Van Der Heiden, “Micro digital sun sensor: System in a package,” in Proceedings of IEEE Conference on MEMS, NANO and Smart Systems, (Institute of Electrical and Electronics Engineers, Banff, Alberta, 2004), 285–328.
    [Crossref]
  7. J. Enright, D. Sinclair, and C. Li, “Embedded algorithms for the SS-411 digital sun sensor,” Acta Astronaut. 64(9-10), 906–924 (2009).
    [Crossref]
  8. P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
    [Crossref]
  9. N. Xie, A. J. Theuwissen, B. Büttgen, H. Hakkesteegt, H. Jasen, and J. Leijtens, “Micro-digital sun sensor: An imaging sensor for space applications,” in Proceedings of IEEE Conference on Industrial Electronics, (Institute of Electrical and Electronics Engineers, Bari, 2010), 3362–3365.
  10. M. S. Wei, F. Xing, B. Li, and Z. You, “Investigation of digital sun sensor technology with an N-shaped slit mask,” Sensors (Basel) 11(12), 9764–9777 (2011).
    [Crossref] [PubMed]
  11. C. De Boom and N. Van Der Heiden, “A novel digital sun sensor: Development and qualification for flight,” in Proceedings of 54th International Astronautical Congress, (International Astronautical Federation, Bermen, 2003), 708–715.
    [Crossref]
  12. F. H. Bauer and W. Dellinger, “Gyroless fine pointing on small explorer spacecraft,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, (American Institute of Aeronautics and Astronautics, Monterey, CA, 1993), 492–506.
    [Crossref]
  13. C. W. Hindman, S. L. Lacy, and N. Hatten, “Image based acquisition and tracking for multi-access laser communications,” in Proceedings of IEEE Conference on Aerospace, (Institute of Electrical and Electronics Engineers, Big Sky, MT, 2006), 1–10.
    [Crossref]
  14. T. Iwata, “Precision attitude and position determination for the Advanced Land Observing Satellite (ALOS),” Proc. SPIE 5659, 34–50 (2005).
    [Crossref]
  15. F. J. Delgado, J. Quero, J. Garcia, C. Tarrida, J. M. Moreno, A. G. Sáez, and P. Ortega, “SENSOSOL: MultiFOV 4-quadrant high precision sun sensor for satellite attitude control,” in Electron Devices (CDE),2013Spanish Conference on, (IEEE, 2013), 123–126.
    [Crossref]
  16. F. Delgado, J. Garcia, C. Tarrida, J. Quero, P. Ortega, L. Teres, F. Serra-Graells, and E. Cabruja, “Integrated design of a smart analog sun sensor with CMOS technology,” in Industrial Technology (ICIT),2012IEEE International Conference on, (IEEE, 2012), 184–188.
    [Crossref]
  17. Y. Zheng and L. Tao, “Application of CMOS image sensor in space technology,” Opt. Technol. 1, 31–35 (2002).
  18. C. Hersom, R. Berman, J. Shah, and R. Hornsey, “Digital sun sensor using multiple pinholes,” in Proceedings of CASI Conference on Astronautics, (Canadian Aeronautics and Space Institute, Ottawa, 2002), 12–14.
  19. P. Rao and S. Sun, and G, C, “Development of high-accuracy CCD sun sensor,” Infrared Technol. 29, 475–479 (2007).
  20. M. Wei, F. Xing, and Z. You, “An implementation method based on ERS imaging mode for sun sensor with 1 kHz update rate and 1″ precision level,” Opt. Express 21(26), 32524–32533 (2013).
    [Crossref] [PubMed]
  21. C. C. Liebe, “Accuracy performance of star trackers - A tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
    [Crossref]
  22. Z. Zheng and T. Ding, “Optical system design for a micro digital sun sensor,” Opt. Technol. 32, 240–243 (2006).
  23. J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
    [Crossref]
  24. Z. Zheng, T. Ding, and J. Zhang, “Characteristics of aperture-array diffraction and its application,” Acta Opt. Sin. 26, 294–299 (2006).
  25. G. S. Waldman, “Variations on the Fresnel zone plate,” JOSA 56(2), 215–217 (1966).
    [Crossref]
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference And Diffraction of Light (Cambridge University, 1999).
  27. C. Xu, S. Zhang, Y. Tan, and S. Zhao, “Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers,” Opt. Express 21(10), 11819–11826 (2013).
    [Crossref] [PubMed]

2013 (3)

2011 (1)

M. S. Wei, F. Xing, B. Li, and Z. You, “Investigation of digital sun sensor technology with an N-shaped slit mask,” Sensors (Basel) 11(12), 9764–9777 (2011).
[Crossref] [PubMed]

2010 (2)

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

2009 (3)

J. Enright, D. Sinclair, and C. Li, “Embedded algorithms for the SS-411 digital sun sensor,” Acta Astronaut. 64(9-10), 906–924 (2009).
[Crossref]

G. Rufino and M. Grassi, “Multi-aperture CMOS sun sensor for microsatellite attitude determination,” Sensors (Basel) 9(6), 4503–4524 (2009).
[Crossref] [PubMed]

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

2007 (1)

P. Rao and S. Sun, and G, C, “Development of high-accuracy CCD sun sensor,” Infrared Technol. 29, 475–479 (2007).

2006 (2)

Z. Zheng, T. Ding, and J. Zhang, “Characteristics of aperture-array diffraction and its application,” Acta Opt. Sin. 26, 294–299 (2006).

Z. Zheng and T. Ding, “Optical system design for a micro digital sun sensor,” Opt. Technol. 32, 240–243 (2006).

2005 (1)

T. Iwata, “Precision attitude and position determination for the Advanced Land Observing Satellite (ALOS),” Proc. SPIE 5659, 34–50 (2005).
[Crossref]

2002 (2)

Y. Zheng and L. Tao, “Application of CMOS image sensor in space technology,” Opt. Technol. 1, 31–35 (2002).

C. C. Liebe, “Accuracy performance of star trackers - A tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
[Crossref]

1966 (1)

G. S. Waldman, “Variations on the Fresnel zone plate,” JOSA 56(2), 215–217 (1966).
[Crossref]

Angulo, M.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Bettarini, R.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Casini, R.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Castañer, L. M.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Ding, T.

Z. Zheng and T. Ding, “Optical system design for a micro digital sun sensor,” Opt. Technol. 32, 240–243 (2006).

Z. Zheng, T. Ding, and J. Zhang, “Characteristics of aperture-array diffraction and its application,” Acta Opt. Sin. 26, 294–299 (2006).

Domínguez, M.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Enright, J.

J. Enright, D. Sinclair, and C. Li, “Embedded algorithms for the SS-411 digital sun sensor,” Acta Astronaut. 64(9-10), 906–924 (2009).
[Crossref]

Fan, Q.

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

Garcia, J.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Gras, A.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Grassi, M.

G. Rufino and M. Grassi, “Multi-aperture CMOS sun sensor for microsatellite attitude determination,” Sensors (Basel) 9(6), 4503–4524 (2009).
[Crossref] [PubMed]

Iwata, T.

T. Iwata, “Precision attitude and position determination for the Advanced Land Observing Satellite (ALOS),” Proc. SPIE 5659, 34–50 (2005).
[Crossref]

Jie, J.

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

Kaidy, J. T.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Landi, A.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Li, B.

M. S. Wei, F. Xing, B. Li, and Z. You, “Investigation of digital sun sensor technology with an N-shaped slit mask,” Sensors (Basel) 11(12), 9764–9777 (2011).
[Crossref] [PubMed]

Li, C.

J. Enright, D. Sinclair, and C. Li, “Embedded algorithms for the SS-411 digital sun sensor,” Acta Astronaut. 64(9-10), 906–924 (2009).
[Crossref]

Liebe, C. C.

C. C. Liebe, “Accuracy performance of star trackers - A tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
[Crossref]

López-Rodríguez, G.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Lorenzini, S.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Ortega, P.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Quero, J. M.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Rao, P.

P. Rao and S. Sun, and G, C, “Development of high-accuracy CCD sun sensor,” Infrared Technol. 29, 475–479 (2007).

Reina, M.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Ricart, J.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Rogers, G. D.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Rufino, G.

G. Rufino and M. Grassi, “Multi-aperture CMOS sun sensor for microsatellite attitude determination,” Sensors (Basel) 9(6), 4503–4524 (2009).
[Crossref] [PubMed]

Schwinger, M. R.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Sinclair, D.

J. Enright, D. Sinclair, and C. Li, “Embedded algorithms for the SS-411 digital sun sensor,” Acta Astronaut. 64(9-10), 906–924 (2009).
[Crossref]

Strikwerda, T. E.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

Sun, S.

P. Rao and S. Sun, and G, C, “Development of high-accuracy CCD sun sensor,” Infrared Technol. 29, 475–479 (2007).

Sun, T.

Tan, Y.

Tao, L.

Y. Zheng and L. Tao, “Application of CMOS image sensor in space technology,” Opt. Technol. 1, 31–35 (2002).

Tarrida, C. L.

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

Waldman, G. S.

G. S. Waldman, “Variations on the Fresnel zone plate,” JOSA 56(2), 215–217 (1966).
[Crossref]

Wang, Z.

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

Wei, M.

Wei, M. S.

M. S. Wei, F. Xing, B. Li, and Z. You, “Investigation of digital sun sensor technology with an N-shaped slit mask,” Sensors (Basel) 11(12), 9764–9777 (2011).
[Crossref] [PubMed]

Wei, X.

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

Xing, F.

Xu, C.

You, Z.

Zhang, G.

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

Zhang, J.

Z. Zheng, T. Ding, and J. Zhang, “Characteristics of aperture-array diffraction and its application,” Acta Opt. Sin. 26, 294–299 (2006).

Zhang, S.

Zhao, S.

Zheng, Y.

Y. Zheng and L. Tao, “Application of CMOS image sensor in space technology,” Opt. Technol. 1, 31–35 (2002).

Zheng, Z.

Z. Zheng and T. Ding, “Optical system design for a micro digital sun sensor,” Opt. Technol. 32, 240–243 (2006).

Z. Zheng, T. Ding, and J. Zhang, “Characteristics of aperture-array diffraction and its application,” Acta Opt. Sin. 26, 294–299 (2006).

Acta Astronaut. (2)

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65(1-2), 61–74 (2009).
[Crossref]

J. Enright, D. Sinclair, and C. Li, “Embedded algorithms for the SS-411 digital sun sensor,” Acta Astronaut. 64(9-10), 906–924 (2009).
[Crossref]

Acta Opt. Sin. (1)

Z. Zheng, T. Ding, and J. Zhang, “Characteristics of aperture-array diffraction and its application,” Acta Opt. Sin. 26, 294–299 (2006).

IEEE Sens. J. (1)

P. Ortega, G. López-Rodríguez, J. Ricart, M. Domínguez, L. M. Castañer, J. M. Quero, C. L. Tarrida, J. Garcia, M. Reina, A. Gras, and M. Angulo, “A miniaturized two axis sun sensor for attitude control of nano-satellites,” IEEE Sens. J. 10(10), 1623–1632 (2010).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

C. C. Liebe, “Accuracy performance of star trackers - A tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
[Crossref]

Infrared Technol. (1)

P. Rao and S. Sun, and G, C, “Development of high-accuracy CCD sun sensor,” Infrared Technol. 29, 475–479 (2007).

JOSA (1)

G. S. Waldman, “Variations on the Fresnel zone plate,” JOSA 56(2), 215–217 (1966).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

J. Jie, G. Zhang, Z. Wang, Q. Fan, and X. Wei, “Optical system design of an attitude sensor incorporating a microlens array,” Opt. Lasers Eng. 48(3), 282–287 (2010).
[Crossref]

Opt. Technol. (2)

Z. Zheng and T. Ding, “Optical system design for a micro digital sun sensor,” Opt. Technol. 32, 240–243 (2006).

Y. Zheng and L. Tao, “Application of CMOS image sensor in space technology,” Opt. Technol. 1, 31–35 (2002).

Proc. SPIE (1)

T. Iwata, “Precision attitude and position determination for the Advanced Land Observing Satellite (ALOS),” Proc. SPIE 5659, 34–50 (2005).
[Crossref]

Sensors (Basel) (2)

M. S. Wei, F. Xing, B. Li, and Z. You, “Investigation of digital sun sensor technology with an N-shaped slit mask,” Sensors (Basel) 11(12), 9764–9777 (2011).
[Crossref] [PubMed]

G. Rufino and M. Grassi, “Multi-aperture CMOS sun sensor for microsatellite attitude determination,” Sensors (Basel) 9(6), 4503–4524 (2009).
[Crossref] [PubMed]

Other (11)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference And Diffraction of Light (Cambridge University, 1999).

C. De Boom and N. Van Der Heiden, “A novel digital sun sensor: Development and qualification for flight,” in Proceedings of 54th International Astronautical Congress, (International Astronautical Federation, Bermen, 2003), 708–715.
[Crossref]

F. H. Bauer and W. Dellinger, “Gyroless fine pointing on small explorer spacecraft,” in Proceedings of the AIAA Guidance, Navigation and Control Conference, (American Institute of Aeronautics and Astronautics, Monterey, CA, 1993), 492–506.
[Crossref]

C. W. Hindman, S. L. Lacy, and N. Hatten, “Image based acquisition and tracking for multi-access laser communications,” in Proceedings of IEEE Conference on Aerospace, (Institute of Electrical and Electronics Engineers, Big Sky, MT, 2006), 1–10.
[Crossref]

S. Mobasser and C. C. Liebe, “MEMS based sun sensor on a chip,” in Proceedings of IEEE Conference on Control Applications, (Institute of Electrical and Electronics Engineers, Istanbul, 2003), 1483–1487.
[Crossref]

C. de Boom, J. Leijtens, and N. Van Der Heiden, “Micro digital sun sensor: a matchbox miracle,” in Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems, (ESA, Loutraki, 2006), 202–207.

C. De Boom, J. Leijtens, and N. Van Der Heiden, “Micro digital sun sensor: System in a package,” in Proceedings of IEEE Conference on MEMS, NANO and Smart Systems, (Institute of Electrical and Electronics Engineers, Banff, Alberta, 2004), 285–328.
[Crossref]

F. J. Delgado, J. Quero, J. Garcia, C. Tarrida, J. M. Moreno, A. G. Sáez, and P. Ortega, “SENSOSOL: MultiFOV 4-quadrant high precision sun sensor for satellite attitude control,” in Electron Devices (CDE),2013Spanish Conference on, (IEEE, 2013), 123–126.
[Crossref]

F. Delgado, J. Garcia, C. Tarrida, J. Quero, P. Ortega, L. Teres, F. Serra-Graells, and E. Cabruja, “Integrated design of a smart analog sun sensor with CMOS technology,” in Industrial Technology (ICIT),2012IEEE International Conference on, (IEEE, 2012), 184–188.
[Crossref]

N. Xie, A. J. Theuwissen, B. Büttgen, H. Hakkesteegt, H. Jasen, and J. Leijtens, “Micro-digital sun sensor: An imaging sensor for space applications,” in Proceedings of IEEE Conference on Industrial Electronics, (Institute of Electrical and Electronics Engineers, Bari, 2010), 3362–3365.

C. Hersom, R. Berman, J. Shah, and R. Hornsey, “Digital sun sensor using multiple pinholes,” in Proceedings of CASI Conference on Astronautics, (Canadian Aeronautics and Space Institute, Ottawa, 2002), 12–14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic of DSS with planar image detector.
Fig. 2
Fig. 2 FOV formation of the DSS.
Fig. 3
Fig. 3 FOV of the DSS (a) without multiplexing image detector method and (b) with multiplexing image detector method [20].
Fig. 4
Fig. 4 Schematic of the mask pattern based on multiplexing image detector.
Fig. 5
Fig. 5 The diffraction model of DSS with a square aperture on the mask plane.
Fig. 6
Fig. 6 The diffraction spots at the incident sun angle of 0° with different models (a) simulation result with theoretical model (b) simulation result with simplified model (c) the intensity of the central line along x axis of both diffraction spots.
Fig. 7
Fig. 7 The diffraction spots with respect to different h (a) h = 10mm (b) h = 15mm (c) h = 20mm.
Fig. 8
Fig. 8 Simulated results of the diffraction spot width with different aperture sizes.
Fig. 9
Fig. 9 The diffraction spots at different incident sun angles (a) θ = 0° (b) θ = 20° (c) θ = 35° (d) θ = 50°.
Fig. 10
Fig. 10 The width of diffraction spots with different aperture sizes at θ = 50°.
Fig. 11
Fig. 11 The illuminated pixels of the diffraction spot with respect to different incident angles as well as various aperture sizes.
Fig. 12
Fig. 12 The schematic of the mask design with detail view.
Fig. 13
Fig. 13 Aperture size optimization regarding (a) diameter of the diffraction spot and (b) illuminated pixel number of the diffraction spot.
Fig. 14
Fig. 14 Clearance optimization with incident sun angle of 50°.
Fig. 15
Fig. 15 Performance test of the XDSS prototype.
Fig. 16
Fig. 16 Measurement error statistics of sun sensor performance test.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

α = arc tan ( x t h ) ,
β = arc tan ( y t h ) ,
θ = arc tan ( l h ) = arc tan ( tan 2 α + tan 2 β ) .
d θ = cos 2 ( θ ) h d ( l ) .
x c = i = 1 m j = 1 n [ P ( i , j ) × i ] i = 1 m j = 1 n P ( i , j ) ,
y c = i = 1 m j = 1 n [ P ( i , j ) × j ] i = 1 m j = 1 n P ( i , j ) .
F O V x = 2 arc tan ( x s 2 h ) ,
F O V y = 2 arc tan ( y s 2 h ) .
F O V =2 arc tan ( l d + l p a t t e r n 2 h ) .
l p a t t e r n = 2 n d m .
F O V 0 : [ arc tan ( l d - l m 2 h ) , arc tan ( l d - l m 2 h ) ] ,
F O V 1 : [ arc tan ( 2 d m + l m - l d 2 h ) , arc tan ( l d - l m + 2 d m 2 h ) ] ,
F O V n : [ arc tan ( 2 n d m + l m - l d 2 h ) , arc tan ( l d - l m + 2 n d m 2 h ) ] .
F O V =2 arc tan ( l d - l m + 2 n d m 2 h ) =2 arc tan ( l d + l p a t t e r n - l m 2 h ) .
d m + l m l d .
E ˜ ( P ) = A i λ a p e r t u r e e i k [ x 0 cos ( a ) + y 0 cos ( b ) + r ] r d σ .

Metrics