Abstract

We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [Opt. Express 22, 10221 (2014)]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

Ming Zhao, Yu Li, and Leilei Peng
Opt. Express 22(9) 10221-10232 (2014)

Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging

S. Kumar, C. Dunsby, P. A. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. W. French
Opt. Express 15(20) 12548-12561 (2007)

Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

Ming Zhao, Run Huang, and Leilei Peng
Opt. Express 20(24) 26806-26827 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2004).
    [Crossref] [PubMed]
  2. A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall, 2009).
  3. Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
    [Crossref]
  4. S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
    [Crossref] [PubMed]
  5. D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15, 15656–15673 (2007).
    [Crossref] [PubMed]
  6. W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
    [Crossref]
  7. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D: Appl. Phys. 36, 1655–1662 (2003).
    [Crossref]
  8. S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
    [Crossref]
  9. D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
    [Crossref] [PubMed]
  10. A. H. A. A. Clayton, Q. S. Q. Hanley, and P. J. P. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
    [Crossref]
  11. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
    [Crossref]
  12. D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
    [Crossref] [PubMed]
  13. M. Zhao, Y. Li, and L. Peng, “Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging,” Opt. Express 22, 10221–10232 (2014).
    [Crossref] [PubMed]
  14. S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
    [Crossref] [PubMed]
  15. H. Szmacinski, J. R. Lakowicz, and M. L. Johnson, “Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier,” Meth. Enzymol. 240, 723–748 (1994).
    [Crossref] [PubMed]
  16. A. A. Squire and P. I. P. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36–49 (1999).
    [Crossref] [PubMed]
  17. A. A. Squire, P. J. P. Verveer, and P. I. P. Bastiaens, “Multiple frequency fluorescence lifetime imaging microscopy,” J. Microsc. 197, 136–149 (2000).
    [Crossref] [PubMed]
  18. H. Chen and E. Gratton, “A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy,” Microsc. Res. Tech. 76, 282–289 (2013).
    [Crossref] [PubMed]
  19. S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. van Geest, and C. F. Kaminski, “mhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy,” Opt. Express 17, 1557–1570 (2009).
    [Crossref] [PubMed]
  20. M. Zhao and L. Peng, “Multiplexed fluorescence lifetime measurements by frequency-sweeping Fourier spectroscopy,” Opt. Lett. 35, 2910–2912 (2010).
    [Crossref] [PubMed]
  21. E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophys. J. 44, 315–324 (1983).
    [Crossref] [PubMed]
  22. J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
    [Crossref]
  23. L. F. Hoyt, “New table of the refractive index of pure glycerol at 20 degrees C,” Ind. Eng. Chem. 26, 329–332 (1934).
    [Crossref]
  24. C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt. 13, 031218 (2008).
    [Crossref] [PubMed]
  25. G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
    [Crossref] [PubMed]
  26. A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J Opt. Soc. Am. A 25, 452–462 (2008).
    [Crossref]
  27. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J Opt. Soc. Am. A 20, 368–379 (2003).
    [Crossref]
  28. S. J. Srickler and R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814 (1962).
    [Crossref]
  29. M. Zhao, R. Huang, and L. Peng, “Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy,” Opt. Express 20, 26806–26827 (2012).
    [Crossref] [PubMed]
  30. S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

H. Chen and E. Gratton, “A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy,” Microsc. Res. Tech. 76, 282–289 (2013).
[Crossref] [PubMed]

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

2010 (2)

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

M. Zhao and L. Peng, “Multiplexed fluorescence lifetime measurements by frequency-sweeping Fourier spectroscopy,” Opt. Lett. 35, 2910–2912 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt. 13, 031218 (2008).
[Crossref] [PubMed]

G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
[Crossref] [PubMed]

A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J Opt. Soc. Am. A 25, 452–462 (2008).
[Crossref]

2007 (1)

2004 (3)

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2004).
[Crossref] [PubMed]

A. H. A. A. Clayton, Q. S. Q. Hanley, and P. J. P. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

2003 (2)

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D: Appl. Phys. 36, 1655–1662 (2003).
[Crossref]

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J Opt. Soc. Am. A 20, 368–379 (2003).
[Crossref]

2002 (1)

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

2000 (1)

A. A. Squire, P. J. P. Verveer, and P. I. P. Bastiaens, “Multiple frequency fluorescence lifetime imaging microscopy,” J. Microsc. 197, 136–149 (2000).
[Crossref] [PubMed]

1999 (1)

A. A. Squire and P. I. P. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36–49 (1999).
[Crossref] [PubMed]

1994 (1)

H. Szmacinski, J. R. Lakowicz, and M. L. Johnson, “Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier,” Meth. Enzymol. 240, 723–748 (1994).
[Crossref] [PubMed]

1991 (1)

Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
[Crossref]

1983 (1)

E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophys. J. 44, 315–324 (1983).
[Crossref] [PubMed]

1962 (1)

S. J. Srickler and R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814 (1962).
[Crossref]

1934 (1)

L. F. Hoyt, “New table of the refractive index of pure glycerol at 20 degrees C,” Ind. Eng. Chem. 26, 329–332 (1934).
[Crossref]

Abreu, J. G.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Agronskaia, A. V.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D: Appl. Phys. 36, 1655–1662 (2003).
[Crossref]

Alexandrov, Y.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Alibhai, D.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Andrews, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

Arlt, J.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

Bajzer, Ž.

Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
[Crossref]

Bastiaens, P. I. P.

A. A. Squire, P. J. P. Verveer, and P. I. P. Bastiaens, “Multiple frequency fluorescence lifetime imaging microscopy,” J. Microsc. 197, 136–149 (2000).
[Crossref] [PubMed]

A. A. Squire and P. I. P. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36–49 (1999).
[Crossref] [PubMed]

Becker, W.

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Berg, R. A.

S. J. Srickler and R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814 (1962).
[Crossref]

Bergmann, A.

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Berisha, F.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Börner, S.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Bunney, T. D.

Caiolfa, V. R.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Calebiro, D.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Carlsson, K.

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J Opt. Soc. Am. A 20, 368–379 (2003).
[Crossref]

Charbon, E.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

Chen, H.

H. Chen and E. Gratton, “A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy,” Microsc. Res. Tech. 76, 282–289 (2013).
[Crossref] [PubMed]

Clayton, A. H. A. A.

A. H. A. A. Clayton, Q. S. Q. Hanley, and P. J. P. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]

Clegg, R. M.

A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall, 2009).

Cole, M. J.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Courtney, P.

Digman, M. A.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Dowling, K.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Dunsby, C.

Elder, A.

A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J Opt. Soc. Am. A 25, 452–462 (2008).
[Crossref]

Elder, A. D.

Esposito, A.

Frank, J. H.

French, P. M. W.

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15, 15656–15673 (2007).
[Crossref] [PubMed]

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2004).
[Crossref] [PubMed]

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Gerritsen, H. C.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D: Appl. Phys. 36, 1655–1662 (2003).
[Crossref]

Grant, D. M.

Gratton, E.

H. Chen and E. Gratton, “A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy,” Microsc. Res. Tech. 76, 282–289 (2013).
[Crossref] [PubMed]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophys. J. 44, 315–324 (1983).
[Crossref] [PubMed]

Gu, Y.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Hanley, Q. S. Q.

A. H. A. A. Clayton, Q. S. Q. Hanley, and P. J. P. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]

He, X.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Henderson, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

Henderson, R. K.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Hoyt, L. F.

L. F. Hoyt, “New table of the refractive index of pure glycerol at 20 degrees C,” Ind. Eng. Chem. 26, 329–332 (1934).
[Crossref]

Huang, H.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Huang, R.

Jalink, K.

G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
[Crossref] [PubMed]

Johnson, M. L.

H. Szmacinski, J. R. Lakowicz, and M. L. Johnson, “Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier,” Meth. Enzymol. 240, 723–748 (1994).
[Crossref] [PubMed]

Jones, R.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Juskaitis, R.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Kaminski, C. F.

S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. van Geest, and C. F. Kaminski, “mhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy,” Opt. Express 17, 1557–1570 (2009).
[Crossref] [PubMed]

A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J Opt. Soc. Am. A 25, 452–462 (2008).
[Crossref]

Kaminski, G. S.

Katan, M.

Kelly, D.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Kennedy, G.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Kennedy, G. T.

Kim, S. E.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

König, K. K.

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Kumar, S.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15, 15656–15673 (2007).
[Crossref] [PubMed]

Laine, R.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Lakowicz, J. R.

H. Szmacinski, J. R. Lakowicz, and M. L. Johnson, “Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier,” Meth. Enzymol. 240, 723–748 (1994).
[Crossref] [PubMed]

Lanigan, P. M. P.

Leveque-Fort, S.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Lever, M. J.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Levitt, J. A.

C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt. 13, 031218 (2008).
[Crossref] [PubMed]

Li, D. D. U.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

Li, D.-U.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

Li, Y.

Limkeman, M.

E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophys. J. 44, 315–324 (1983).
[Crossref] [PubMed]

Lohse, M. J.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

MacDonald, B. T.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Magee, A. I.

Margineanu, A.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

McGhee, E. J.

McGinty, J.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15, 15656–15673 (2007).
[Crossref] [PubMed]

Munro, I.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15, 15656–15673 (2007).
[Crossref] [PubMed]

Neil, M. A. A.

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15, 15656–15673 (2007).
[Crossref] [PubMed]

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Nikolaev, V. O.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Ogink, J.

G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
[Crossref] [PubMed]

Owen, D. M.

Peng, L.

Periasamy, A.

A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall, 2009).

Philip, J.

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J Opt. Soc. Am. A 20, 368–379 (2003).
[Crossref]

Phillips, D.

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2004).
[Crossref] [PubMed]

Ponsioen, B.

G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
[Crossref] [PubMed]

Prendergast, F. G.

Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
[Crossref]

Rae, B.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

Richardson, J.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

Schlachter, S.

S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. van Geest, and C. F. Kaminski, “mhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy,” Opt. Express 17, 1557–1570 (2009).
[Crossref] [PubMed]

A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J Opt. Soc. Am. A 25, 452–462 (2008).
[Crossref]

Schlipp, A.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Schwede, F.

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Semonov, M. V.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Sharp, J. C.

Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
[Crossref]

Siegel, J.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Squire, A. A.

A. A. Squire, P. J. P. Verveer, and P. I. P. Bastiaens, “Multiple frequency fluorescence lifetime imaging microscopy,” J. Microsc. 197, 136–149 (2000).
[Crossref] [PubMed]

A. A. Squire and P. I. P. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36–49 (1999).
[Crossref] [PubMed]

Srickler, S. J.

S. J. Srickler and R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814 (1962).
[Crossref]

Stoppa, D.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

Sucharov, L. O. D.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Suhling, K.

C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt. 13, 031218 (2008).
[Crossref] [PubMed]

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2004).
[Crossref] [PubMed]

Szmacinski, H.

H. Szmacinski, J. R. Lakowicz, and M. L. Johnson, “Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier,” Meth. Enzymol. 240, 723–748 (1994).
[Crossref] [PubMed]

Talbot, C. B.

Tertoolen, L.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D: Appl. Phys. 36, 1655–1662 (2003).
[Crossref]

Therneau, T. M.

Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
[Crossref]

Tregidgo, C.

C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt. 13, 031218 (2008).
[Crossref] [PubMed]

Tyndall, D.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

van der Krogt, G. N. M.

G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
[Crossref] [PubMed]

van Geest, L. K.

Verveer, P. J. P.

A. H. A. A. Clayton, Q. S. Q. Hanley, and P. J. P. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]

A. A. Squire, P. J. P. Verveer, and P. I. P. Bastiaens, “Multiple frequency fluorescence lifetime imaging microscopy,” J. Microsc. 197, 136–149 (2000).
[Crossref] [PubMed]

Walker, R.

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

Warren, S.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Webb, S. E. D.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Wilson, T.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Zamai, M.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Zhang, A.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Zhao, M.

Biophys. J. (2)

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophys. J. 44, 315–324 (1983).
[Crossref] [PubMed]

ChemPhysChem (1)

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, and I. Munro, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12, 609–626 (2011).
[Crossref] [PubMed]

Eur. Biophys. J. Biophys. (1)

Ž. Bajzer, T. M. Therneau, J. C. Sharp, and F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. 20, 247–262 (1991).
[Crossref]

Ind. Eng. Chem. (1)

L. F. Hoyt, “New table of the refractive index of pure glycerol at 20 degrees C,” Ind. Eng. Chem. 26, 329–332 (1934).
[Crossref]

J Opt. Soc. Am. A (2)

A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J Opt. Soc. Am. A 25, 452–462 (2008).
[Crossref]

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J Opt. Soc. Am. A 20, 368–379 (2003).
[Crossref]

J. Biomed. Opt. (3)

C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt. 13, 031218 (2008).
[Crossref] [PubMed]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
[Crossref] [PubMed]

D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. J. Srickler and R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814 (1962).
[Crossref]

J. Microsc. (3)

A. H. A. A. Clayton, Q. S. Q. Hanley, and P. J. P. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]

A. A. Squire and P. I. P. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36–49 (1999).
[Crossref] [PubMed]

A. A. Squire, P. J. P. Verveer, and P. I. P. Bastiaens, “Multiple frequency fluorescence lifetime imaging microscopy,” J. Microsc. 197, 136–149 (2000).
[Crossref] [PubMed]

J. Phys. D: Appl. Phys. (1)

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D: Appl. Phys. 36, 1655–1662 (2003).
[Crossref]

Meth. Enzymol. (1)

H. Szmacinski, J. R. Lakowicz, and M. L. Johnson, “Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier,” Meth. Enzymol. 240, 723–748 (1994).
[Crossref] [PubMed]

Microsc. Res. Tech. (2)

H. Chen and E. Gratton, “A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy,” Microsc. Res. Tech. 76, 282–289 (2013).
[Crossref] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]

Nat. Protoc. (1)

S. Börner, F. Schwede, A. Schlipp, F. Berisha, D. Calebiro, M. J. Lohse, and V. O. Nikolaev, “FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells,” Nat. Protoc. 6, 427–438 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Photochem. Photobiol. Sci. (1)

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2004).
[Crossref] [PubMed]

Plos One (1)

G. N. M. van der Krogt, J. Ogink, B. Ponsioen, and K. Jalink, “A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example,” Plos One 3, E1916 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898–1907 (2002).
[Crossref]

Science (1)

S. E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, and X. He, “Wnt stabilization of beta-Catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340, 867–870 (2013).
[Crossref] [PubMed]

Other (2)

J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[Crossref]

A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic plot of FmFLIM system setup. Rotation of the polygon mirror (Lincoln Laser, spinning speed 10,000–55,000 rpm) introduces sweeping optical path difference, resulting in fast intensity modulation of the excitation lasers. As all laser lines experience the same amount of optical path difference at a given time, different lasers are modulated at distinct instantaneous frequencies. Fluorescence emission collected by PMTs is demodulated in reference to a specific excitation laser modulation. After mixing and filtering, only emission signal generated by the specific excitation laser remains. In the case of the acceptor within a FRET pair, fluorescent emission due to FRET process is obtained by mixing donor laser modulation with acceptor PMT signal; while emission from direct acceptor laser excitation is isolated by mixing acceptor laser modulation with acceptor PMT signal. BS = beam spliter, DM = dichroic mirror, F = filter, L = lens, M = mirror, PD = photodiode, PMT = photo multiplier tube.

Fig. 2
Fig. 2

The phasor representation of multi-frequency lifetime measurement results from FmFLIM. The dashed half circle is the phasor trajectory of single exponential decay. All phasor trajectories, regradless decay models, should fall within the grey area surrounded by the dashed half circle. Red areas are imaginary projection areas of the trajectory over a given frequency sweeping span. Green areas are real projection areas.

Fig. 3
Fig. 3

(a) Theoretical R-ratio of frequency-sweeping lifetime data, assuming single exponential decay. The curve is calculated with ωmin= 15 MHz and ωmax= 150 MHz. ωmin is limited by the low-pass band limit of RF electronics, and ωmax is limited by the maximal scan speed of the optical delay line as ω max = 2 π λ ex v max in FmFLIM [20].

Fig. 4
Fig. 4

(a) R-ratio calculated from simulated data of a double-exponential decay sample, whose τ1 = 3.47ns and τ2 = 1.6ns.The fraction of τ1 component increases from 0 to 100% (x-axis). (b) Average lifetimes obtained by single-exponential model fitting (blue) of simulated data or the R-method (red)

Fig. 5
Fig. 5

Diagram of FPGA-based lifetime image processing in the FmFLIM microscope. ADC: Analog-Digital Convertor. Clk: Clock. FIFO: First-in-first-ou buffer.

Fig. 6
Fig. 6

GFP lifetime changes due to refractive index changes of media. Lifetimes are calculated by single-exponential fitting (blue) and the R-method (red). Error bars represent STDs of lifetimes from 40,000 repeating measurements, each acquired with a total acquisition time of 132 μs.

Fig. 7
Fig. 7

(a) The structure of dsDNA formed by complementary internally fluorescein-labeled 30-mer ssDNA and Cy3 labeled 66-mer ssDNA. The lifetime of fluorescein is 3.47 ns in ssDNA, and 1.60 ns in dsDNA due to FRET. (b) Average lifetimes obtained by iterative fitting (x-axis) vs. by the R-method (y-axis) from mixtures of ssDNA and dsDNA. The dashed diagonal line indicates that R-method results are identical to results of iterative fitting. Error bars represent STDs of lifetimes from 40,000 repeating measurements, each acquired with a total acquisition time of 132 μs.

Fig. 8
Fig. 8

Average GFP lifetime traces of HeLa cells (N=4) expressing the GFP-Epac-mCherry cAMP sensor, in comparison to HeLa cells (N=4) expressing free GFP. The treatment was applied at 5 minutes after imaging started. The cAMP level increased after the treatment, and GFP lifetimes of GFP-Epac-mCherry sensors increased accordingly. The lifetime of control cells expressing free GFP remained the same. Left y-axis: Average lifetimes. Right y-axis: Experimental R-ratio. Average lifetimes obtained by single-exponential fitting (blue) and by the R-method (red) match well.

Fig. 9
Fig. 9

Time-lapse cAMP level imaging of HeLa cells expressing GFP-Epac-mCherry sensor. FLIM confocal images were taken at the donor (GFP) channel (Ex: 488 nm, Em: 525±20 nm) and the acceptor (mCherry) channel (Ex: 561, Em: 593±20nm) simultaneously. Lifetime images were calculated with the R-method.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = cos ( Δ ϕ ) = cos ( 2 π Δ d λ )
I i j Ex Em ( ω i ) = A i j β i j m i j ( ω i ) sin [ Ω i j t + ϕ i j ( ω i ) + ε i j ]
C ˜ i j ( ω i ) = A i j exp ( i ε i j ) = H [ I i j st , ex em ( ω i ) ] m st ( ω i ) exp [ i ϕ st ( ω i ) ]
I ˜ i j Cor ( ω i ) = H [ I i j ex em ( ω i ) ] C ˜ i j ( ω i ) = β i j m i j ( ω i ) exp [ i ϕ i j ( ω i ) ]
R i j = ω max ω min I ˜ i j Cor ( ω i ) d ω i ω max ω min I ˜ i j Cor ( ω i ) d ω i
I ˜ ( ω ) = β 1 + i ω τ
ω max ω min I ˜ ( ω ) d ω = β τ [ tan 1 ( ω max τ ) tan 1 ( ω min τ ) ] i β 2 τ [ ln ( ω max 2 τ 2 + 1 ) ln ( ω min 2 τ 2 + 1 ) ]
R ( τ ) = ln ( ω max 2 τ 2 + 1 ) ln ( ω min 2 τ 2 + 1 ) 2 [ tan 1 ( ω max τ ) tan 1 ( ω min τ ) ]

Metrics