Abstract

We show experimentally that poly-crystalline TiO2 spheres, 20-30 μm in diameter, exhibit a magnetic dipole Mie resonance in the terahertz (THz) frequency band (1.0-1.6 THz) with a narrow line-width (<40 GHz). We detect and investigate the magnetic dipole and electric dipole resonances in single high-permittivity TiO2 microspheres, using a near-field probe with a sub-wavelength (~λ/50) size aperture and THz time-domain spectroscopy technique. The Mie resonance signatures are observed in the electric field amplitude and phase spectra, as well as in the electric field distribution near the microspheres. The narrow line-width and the sub-wavelength size (λ/10) make the TiO2 microspheres excellent candidates for realizing low-loss THz metamaterials.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling

Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino
J. Opt. Soc. Am. B 31(5) 1078-1086 (2014)

Flexible all-dielectric metamaterials in terahertz range based on ceramic microsphere/ PDMS composite

Chuwen Lan, Ke Bi, Baiwei Li, Yanjiao Zhao, and Zhaowei Qu
Opt. Express 25(23) 29155-29160 (2017)

Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial

Andreas Bitzer, Hannes Merbold, Andreas Thoman, Thomas Feurer, Hanspeter Helm, and Markus Walther
Opt. Express 17(5) 3826-3834 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  3. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
    [Crossref]
  4. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106(6), 1693–1698 (2009).
    [Crossref] [PubMed]
  5. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  6. J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
  7. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94(27), 65–68 (1947).
    [Crossref]
  8. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14(15), 4035–4044 (2002).
    [Crossref]
  9. B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
    [Crossref] [PubMed]
  10. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
    [Crossref] [PubMed]
  11. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  12. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
    [Crossref] [PubMed]
  13. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref] [PubMed]
  14. H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
    [Crossref]
  15. K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.
  16. H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
    [Crossref]
  17. M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
    [Crossref]
  18. O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
    [Crossref]
  19. J. R. Knab, A. J. L. Adam, E. Shaner, H. J. A. J. Starmans, and P. C. M. Planken, “Terahertz near-field spectroscopy of filled subwavelength sized apertures in thin metal films,” Opt. Express 21(1), 1101–1112 (2013).
    [Crossref] [PubMed]
  20. O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
    [Crossref]
  21. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
    [Crossref] [PubMed]
  22. V. Sadaune, L. Kang, and D. Lippens, “Enhanced transmission via a sub-wavelength hole aperture coupled to a high-permittivity resonator,” J. Phys. D Appl. Phys. 45(47), 475102 (2012).
    [Crossref]
  23. A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
    [Crossref]
  24. L. Kang, V. Sadaune, and D. Lippens, “Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle,” Prog. Electromagn. Res. 113, 211–226 (2011).
  25. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  27. See http://www.lumerical.com/tcad-products/fdtd/ for Lumerical FDTD Solutions, Lumerical Solutions, Inc.
  28. D. L. Markovich, P. Ginzburg, A. K. Samusev, P. A. Belov, and A. V. Zayats, “Magnetic dipole radiation tailored by substrates: numerical investigation,” Opt. Express 22(9), 10693–10702 (2014).
    [Crossref] [PubMed]
  29. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref] [PubMed]

2014 (2)

A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
[Crossref]

D. L. Markovich, P. Ginzburg, A. K. Samusev, P. A. Belov, and A. V. Zayats, “Magnetic dipole radiation tailored by substrates: numerical investigation,” Opt. Express 22(9), 10693–10702 (2014).
[Crossref] [PubMed]

2013 (3)

J. R. Knab, A. J. L. Adam, E. Shaner, H. J. A. J. Starmans, and P. C. M. Planken, “Terahertz near-field spectroscopy of filled subwavelength sized apertures in thin metal films,” Opt. Express 21(1), 1101–1112 (2013).
[Crossref] [PubMed]

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

2012 (5)

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

V. Sadaune, L. Kang, and D. Lippens, “Enhanced transmission via a sub-wavelength hole aperture coupled to a high-permittivity resonator,” J. Phys. D Appl. Phys. 45(47), 475102 (2012).
[Crossref]

2011 (3)

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

L. Kang, V. Sadaune, and D. Lippens, “Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle,” Prog. Electromagn. Res. 113, 211–226 (2011).

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (5)

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106(6), 1693–1698 (2009).
[Crossref] [PubMed]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

2008 (2)

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2002 (1)

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

2001 (1)

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94(27), 65–68 (1947).
[Crossref]

Adam, A. J. L.

Albella, P.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Al-Naib, I. A. I.

Averitt, R. D.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Aydin, K.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Belov, P. A.

Berger, C.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bilotti, F.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Brener, I.

A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
[Crossref]

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Cakmak, A. O.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chung, U.-C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Cummer, S. A.

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

De Heer, W. A.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Delagnes, J. C.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Dominec, F.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Elissalde, C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

Eyraud, C.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Federici, J.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Garcia-Etxarri, B.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Geffrin, J. M.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Ginzburg, P.

Gómez-Medina, R.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

González, F.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Graham, C.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hangyo, M.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Harel, R.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Hsu, J. W. P.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Huang, X.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Izumi, K.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Jiang, Y.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Jiang, Z.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Jimba, Y.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadlec, C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kadlec, F.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kang, L.

V. Sadaune, L. Kang, and D. Lippens, “Enhanced transmission via a sub-wavelength hole aperture coupled to a high-permittivity resonator,” J. Phys. D Appl. Phys. 45(47), 475102 (2012).
[Crossref]

L. Kang, V. Sadaune, and D. Lippens, “Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle,” Prog. Electromagn. Res. 113, 211–226 (2011).

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Knab, J. R.

Koch, M.

Kuzel, P.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Kužel, P.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lee, M.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94(27), 65–68 (1947).
[Crossref]

Li, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, Z.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Lippens, D.

V. Sadaune, L. Kang, and D. Lippens, “Enhanced transmission via a sub-wavelength hole aperture coupled to a high-permittivity resonator,” J. Phys. D Appl. Phys. 45(47), 475102 (2012).
[Crossref]

L. Kang, V. Sadaune, and D. Lippens, “Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle,” Prog. Electromagn. Res. 113, 211–226 (2011).

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Litman, A.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Macfaden, A. J.

A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
[Crossref]

Maglione, M.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Markovich, D. L.

Matsumoto, N.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Merlin, R.

R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106(6), 1693–1698 (2009).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Mitrofanov, O.

A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
[Crossref]

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Miyazaki, H.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moreno, F.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Mounaix, P.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Natrella, M.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Navarro-Cía, M.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Nemec, H.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Nieto-Vesperinas, M.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

O’Brien, S.

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ozbay, E.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Pan, W.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Pfeiffer, L. N.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Planken, P. C. M.

Popa, B.-I.

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Renaud, C. C.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Reno, J. L.

A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Sadaune, V.

V. Sadaune, L. Kang, and D. Lippens, “Enhanced transmission via a sub-wavelength hole aperture coupled to a high-permittivity resonator,” J. Phys. D Appl. Phys. 45(47), 475102 (2012).
[Crossref]

L. Kang, V. Sadaune, and D. Lippens, “Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle,” Prog. Electromagn. Res. 113, 211–226 (2011).

Sáenz, J. J.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Samusev, A. K.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Seeds, A. J.

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

Shaner, E.

Shibuya, K.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Singh, R.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Starmans, H. J. A. J.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Takano, K.

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

Tao, H.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Thompson, R. J.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Vaillon, R.

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Vegni, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

West, K. W.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wynn, J. D.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Yahiaoui, R.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Yu, W.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

Zayats, A. V.

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100(6), 061117 (2012).
[Crossref]

M. Navarro-Cía, M. Natrella, F. Dominec, J. C. Delagnes, P. Kuzel, P. Mounaix, C. Graham, C. C. Renaud, A. J. Seeds, and O. Mitrofanov, “Terahertz imaging of sub-wavelength particles with Zenneck surface,” Appl. Phys. Lett. 103(22), 221103 (2013).
[Crossref]

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. De Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103(11), 111105 (2013).
[Crossref]

A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, “3 μm aperture probes for near-field terahertz transmission microscopy,” Appl. Phys. Lett. 104(1), 011110 (2014).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[Crossref]

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

J. Inst. Electr. Eng. Part III (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part III 94(27), 65–68 (1947).
[Crossref]

J. Phys. Condens. Matter (1)

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

V. Sadaune, L. Kang, and D. Lippens, “Enhanced transmission via a sub-wavelength hole aperture coupled to a high-permittivity resonator,” J. Phys. D Appl. Phys. 45(47), 475102 (2012).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nat. Commun. (1)

J. M. Geffrin, B. Garcıa-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Phys. Rev. Lett. (5)

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106(6), 1693–1698 (2009).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

L. Kang, V. Sadaune, and D. Lippens, “Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle,” Prog. Electromagn. Res. 113, 211–226 (2011).

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (2)

K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, and M. Hangyo, “Terahertz metamaterials composed of TiO2 cube arrays,” in Proceedings of Congress on Advanced Electromagnetic Mater. in Microw. and Opt. (2008), pp. 777–779.

See http://www.lumerical.com/tcad-products/fdtd/ for Lumerical FDTD Solutions, Lumerical Solutions, Inc.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscope image of a typical poly-crystalline TiO2 sphere; (b) Schematic diagram of the experimental setup: a TiO2 sphere attached to a thin polymer film (PF) is positioned at distance z above the sub-wavelength aperture (SWA) probe containing a photoconductive THz antenna [23]. (c) A map of the electric field (Ex) near a TiO2 sphere immediately after the excitation (Sample T1). The dashed circle shows the sphere size and position. The black cross marks a location where the incident THz pulse waveform is measured for reference. (d) THz pulse waveforms detected in the near-field zone of the sphere (red trace) and at the cross location (black trace). (e) The amplitude transmission spectrum (red line) obtained from the waveforms in (d) and the Fano line shape (black line) fitted to the data; inset: an optical microscope image (60 μm × 60 μm) of Sample T1.

Fig. 2
Fig. 2

(a) FDTD simulated MD (1.21 THz) and (b) ED (1.66 THz) modes in a TiO2 sphere (ε = 100, radius r = 12.5 μm); the x-polarized incident EM wave propagates along the z-axis. The color represents the electric field (Ex) normalized to the maximum field within the sphere. (c) and (d) Resonance frequencies of the MD and ED modes in an elliptical resonator.

Fig. 3
Fig. 3

(a) Dependence of the transmission amplitude spectrum Ems/E0 on the distance z between the aperture and the microsphere (Sample T2); inset: the resonance frequency f0 and the enhancement factor q as functions of z. (b) The amplitude spectrum for the closest distance z<1 μm measured by a 5 μm aperture probe (red line), the fitted Fano resonance line shape (black line) and the simulated spectrum of a TiO2 sphere; inset: the optical microscope image (60 μm × 60 μm) of Sample T2. (c) The simulated field distributions for a sphere (r = 12.5 μm) placed in front of the near-field probe at the MD resonance; the metallic screen with a 5 μm aperture is 1 μm (left) and 4 μm (right) away from the sphere surface.

Fig. 4
Fig. 4

Measured (a) and simulated (b) electric field maps Ex(x,y) at z = ~1 μm from the TiO2 sphere immediately after the excitation of the sphere by the THz pulse, t = 1.1 ps (image area: 100 μm × 100 μm). (c) Ex(x,y) map of the same area at t = 5 ps. The spectral amplitude ratio (d) and phase (e) measured at the sphere center (x0, y0) and at (x0, y0-10 μm); these location are indicated by the red and blue arrows in (a) and (c). The diagram in the inset of (e) shows the electric field distributions |E| and Ex for the MD mode with the magnetic moment perpendicular to the xy-plane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E m s E 0 = ( q Γ 2 + ( ω ω 0 ) ) 2 ( Γ / 2 ) 2 + ( ω ω 0 ) 2 ,

Metrics