Abstract

We propose all-optical one-to-three non-conjugated wavelength multicasting of QPSK signal with capability of phase regeneration, using dual-conjugated-pump phase sensitive amplification (PSA). Based on the seven-wave model, we can obtain phase transfer functions of individual multicasting channel. Different from two multicasting copies, the phase regeneration performance of input signal is determined by the nonlinear phase shift. Moreover, the optimal squeezing points of three multicasting channels have a deviation. Thus, there exists a regeneration performance trade-off among three multicasting channels. Our numerical simulation shows that the error vector magnitude (EVM) of 50 Gb/s QPSK signal can be successfully improved when both nonlinear phase shift and four-state position in its constellation are optimized. The calculated BER curves verify that the OSNR penalties of three multicasting channels are improved by around 1dB at BER = 10−3.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Signal phase regeneration through multiple wave coherent addition enabled by hybrid optical phase squeezer

Takayuki Kurosu, Hung Nguyen Tan, Karen Solis-Trapala, and Shu Namiki
Opt. Express 23(21) 27920-27930 (2015)

Phase regeneration for polarization-division multiplexed signals based on vector dual-pump nondegenerate phase sensitive amplification

Weili Yang, Yu Yu, Mengyuan Ye, Guanyu Chen, Chi Zhang, and Xinliang Zhang
Opt. Express 23(3) 2010-2020 (2015)

Low-noise optical amplification and signal processing in parametric devices

Zhi Tong and Stojan Radic
Adv. Opt. Photon. 5(3) 318-384 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  2. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
    [Crossref]
  3. C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
    [Crossref] [PubMed]
  4. J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Optical phase regeneration of multi-level PSK using dual-conjugate-pump degenerate phase-sensitive amplification,” in Proceedings of European Conference in Optical Communications (Amsterdam, Netherlands, 2012), paper P3.07.
    [Crossref]
  5. B. Stiller, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase regeneration of a star-8QAM signal in a phase-sensitive amplifier with conjugated pumps,” Opt. Express 22(1), 1028–1035 (2014).
    [Crossref] [PubMed]
  6. C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all-optical wavelength multicasting by self-phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO (Long Beach, California, 2006), paper CTuD4.
    [Crossref]
  7. J. L. Pleumeekers, J. Leuthold, M. Kauer, P. Bernasconi, C. A. Burrus, M. Cappuzzo, E. Chen, L. Gomez, and E. Laskowski, “All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer,” in Proceedings of OFC (Anaheim, California, 2002), paper ThDD4.
    [Crossref]
  8. B. H. L. Lee, R. Mohamad, and K. Dimyati, “Performance of all-optical multicasting via dual-stage XGM in SOA for grid networking,” IEEE Photon. Technol. Lett. 18(21), 2215–2217 (2006).
    [Crossref]
  9. G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
    [Crossref]
  10. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
    [Crossref]
  11. M. P. Fok and C. Shu, “Performance investigation of one-to-six wavelength multicasting of ASK–DPSK signal in a highly nonlinear bismuth oxide fiber,” J. Lightwave Technol. 27(15), 2953–2957 (2009).
    [Crossref]
  12. G.-W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [Crossref] [PubMed]
  13. O. F. Yilmaz, S. Nuccio, S. Khaleghi, J.-Y. Yang, L. Christen, and A. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals into a single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Proceedings of OFC (San Diego, California, 2009), paper OThM4.
    [Crossref]
  14. A. Malacarne, G. Meloni, G. Berrettini, N. Sambo, L. Potì, and A. Bogoni, “Optical multicasting of 16QAM signals in periodically poled lithium niobate waveguide,” J. Lightwave Technol. 31(11), 1797–1803 (2013).
    [Crossref]
  15. Y. Meng, J. Lian, S. Fu, M. Tang, P. Shum, and D. Liu, “All-optical DPSK regenerative one-to-nine wavelength multicasting using dual-pump degenerate phase sensitive amplifier,” J. Lightwave Technol. 32(15), 2605–2612 (2014).
    [Crossref]
  16. K. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
    [Crossref]
  17. C. J. McKinstrie, S. Radic, and A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” Opt. Lett. 27(13), 1138–1140 (2002).
  18. M. Gao and K. Kikuchi, “The effect of pump-pump four-wave mixing on gain of two-pump phase sensitive optical amplifiers,” in Proceedings of CLEO (Baltimore, Maryland, 2009), paper CFS2.
    [Crossref]
  19. J. Kakande, R. Slavík, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “All-optical processing of multi-level phase shift keyed signals,” in Proceedings of OFC (Los Angeles, California, 2012), paper OW1l.3.
    [Crossref]
  20. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  21. A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
    [Crossref]
  22. T. Richter, B. Corcoran, S. L. Olsson, C. Lundström, M. Karlsson, C. Schubert, and P. A. Andrekson, “Experimental characterization of a phase-sensitive four-mode fiber-optic parametric amplifier,” in Proceedings of European Conference in Optical Communications (Amsterdam, Netherlands, 2012), paper Th.1.F.1.
    [Crossref]

2014 (2)

2013 (1)

2012 (1)

2010 (1)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

2009 (3)

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

M. P. Fok and C. Shu, “Performance investigation of one-to-six wavelength multicasting of ASK–DPSK signal in a highly nonlinear bismuth oxide fiber,” J. Lightwave Technol. 27(15), 2953–2957 (2009).
[Crossref]

K. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[Crossref]

2008 (1)

2006 (2)

B. H. L. Lee, R. Mohamad, and K. Dimyati, “Performance of all-optical multicasting via dual-stage XGM in SOA for grid networking,” IEEE Photon. Technol. Lett. 18(21), 2215–2217 (2006).
[Crossref]

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[Crossref]

2004 (1)

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

2002 (2)

C. J. McKinstrie, S. Radic, and A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” Opt. Lett. 27(13), 1138–1140 (2002).

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

1990 (1)

Abedin, K. S.

Alic, N.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

Andrekson, P. A.

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Berrettini, G.

Bogoni, A.

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[Crossref]

Brès, C.-S.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

Chraplyvy, A.

Ciaramella, E.

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Contestabile, G.

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Corcoran, B.

Croussore, K.

K. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[Crossref]

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Dimyati, K.

B. H. L. Lee, R. Mohamad, and K. Dimyati, “Performance of all-optical multicasting via dual-stage XGM in SOA for grid networking,” IEEE Photon. Technol. Lett. 18(21), 2215–2217 (2006).
[Crossref]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Fok, M. P.

Fu, S.

Gordon, J. P.

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Karlsson, M.

Kuo, B. P.-P.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

Lee, B. H. L.

B. H. L. Lee, R. Mohamad, and K. Dimyati, “Performance of all-optical multicasting via dual-stage XGM in SOA for grid networking,” IEEE Photon. Technol. Lett. 18(21), 2215–2217 (2006).
[Crossref]

Leuchs, G.

Li, G.

K. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[Crossref]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Lian, J.

Liu, D.

Lu, G.-W.

Lundström, C.

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Malacarne, A.

McKinstrie, C. J.

Meloni, G.

Meng, Y.

Miyazaki, T.

Mohamad, R.

B. H. L. Lee, R. Mohamad, and K. Dimyati, “Performance of all-optical multicasting via dual-stage XGM in SOA for grid networking,” IEEE Photon. Technol. Lett. 18(21), 2215–2217 (2006).
[Crossref]

Mollenauer, L. F.

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Onishchukov, G.

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Potì, L.

Presi, M.

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Radic, S.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

C. J. McKinstrie, S. Radic, and A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” Opt. Lett. 27(13), 1138–1140 (2002).

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Sambo, N.

Schmauss, B.

Shu, C.

Shum, P.

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Stiller, B.

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[Crossref]

Tang, M.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Wiberg, A. O. J.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (5)

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[Crossref]

K. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[Crossref]

B. H. L. Lee, R. Mohamad, and K. Dimyati, “Performance of all-optical multicasting via dual-stage XGM in SOA for grid networking,” IEEE Photon. Technol. Lett. 18(21), 2215–2217 (2006).
[Crossref]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1005 (2009).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photon. (1)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next generation telecommunications systems,” Nat. Photon. 4(10), 690–695 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (7)

M. Gao and K. Kikuchi, “The effect of pump-pump four-wave mixing on gain of two-pump phase sensitive optical amplifiers,” in Proceedings of CLEO (Baltimore, Maryland, 2009), paper CFS2.
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “All-optical processing of multi-level phase shift keyed signals,” in Proceedings of OFC (Los Angeles, California, 2012), paper OW1l.3.
[Crossref]

T. Richter, B. Corcoran, S. L. Olsson, C. Lundström, M. Karlsson, C. Schubert, and P. A. Andrekson, “Experimental characterization of a phase-sensitive four-mode fiber-optic parametric amplifier,” in Proceedings of European Conference in Optical Communications (Amsterdam, Netherlands, 2012), paper Th.1.F.1.
[Crossref]

O. F. Yilmaz, S. Nuccio, S. Khaleghi, J.-Y. Yang, L. Christen, and A. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals into a single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Proceedings of OFC (San Diego, California, 2009), paper OThM4.
[Crossref]

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all-optical wavelength multicasting by self-phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO (Long Beach, California, 2006), paper CTuD4.
[Crossref]

J. L. Pleumeekers, J. Leuthold, M. Kauer, P. Bernasconi, C. A. Burrus, M. Cappuzzo, E. Chen, L. Gomez, and E. Laskowski, “All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer,” in Proceedings of OFC (Anaheim, California, 2002), paper ThDD4.
[Crossref]

J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Optical phase regeneration of multi-level PSK using dual-conjugate-pump degenerate phase-sensitive amplification,” in Proceedings of European Conference in Optical Communications (Amsterdam, Netherlands, 2012), paper P3.07.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Operation principle of the QPSK phase regeneration and multicasting.
Fig. 2
Fig. 2 Phase transfer functions of signal, copy1 and copy2 for different nonlinear phase shift.
Fig. 3
Fig. 3 Misfit factor of signal, copy1 and copy2 versus nonlinear phase shift.
Fig. 4
Fig. 4 Power transfer functions of signal, copy1 and copy2 for different input power.
Fig. 5
Fig. 5 Configuration of the simulated phase regenerative multicasting scheme.
Fig. 6
Fig. 6 Normalized trajectories of the original input and three multicasting channels with different nonlinear phase shift (blue for 0.3rad, red for 0.6rad and green for 0.8rad).
Fig. 7
Fig. 7 (a) EVM of three multicasting channels under different relative input phase; (b) constellation diagram of the original degraded signal and the three multicasting channels on the condition of 47.5° relative input phase.
Fig. 8
Fig. 8 EVM improvement for three multicasting channels with respect to the phase noise source with different power spectral density.
Fig. 9
Fig. 9 BER measurements of three multicasting channels together with B2B case.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 Φ S Φ P1 Φ P2 = 2 Φ S ( Φ S ) ( Φ S ) = 4 Φ S
Φ C1 = Φ P1 + Φ S Φ P2 = ( Φ S ) + Φ S ( Φ S ) = Φ S
Φ C 1 = 2 Φ P 1 Φ S = 2 Φ S Φ S = 3 Φ S
d A i ( z ) / d z = i γ { [ | A i | 2 + 2 j i | A j | 2 ] A i + 2 A p A m A n exp ( i Δ β i , p , m , n z ) + A o A q 2 exp ( i Δ β q , q , i , o z ) } ( α / 2 ) A i

Metrics