Abstract

A transmitted-type guided-mode resonance (GMR) sensor is presented for using an electro-optic heterodyne interferometer to tune phase detection sensitivity. The GMR grating waveguide structure is fabricated using a low-cost nanoimprinting SiO2 sol-gel process and sputtering TiO2 film. The phase properties of the GMR sensor are numerically investigated to verify its phase detection capability in a heterodyne interferometer. The phase curves for both transmitted- and reflected-type GMR sensors are experimentally obtained and compared. We conclude that the transmitted-type GMR sensor is more feasible for tuning phase detection sensitivity by rotating the analyzer in the electro-optic heterodyne interferometer. In our experiment, we achieved the GMR sensor phase detection sensitivity as high as 1.8 × 10−7 RIU.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry

Wen-Kai Kuo, Siang-He Syu, Peng-Zhi Lin, and Hsin Her Yu
Appl. Opt. 55(4) 903-907 (2016)

Two-dimensional grating guided-mode resonance tunable filter

Wen-Kai Kuo and Che-Jung Hsu
Opt. Express 25(24) 29642-29649 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  2. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120, 187–193 (2006).
  3. R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
    [Crossref]
  4. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
    [Crossref]
  5. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
    [Crossref]
  6. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
    [Crossref]
  7. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
    [Crossref] [PubMed]
  8. R. Magnusson, K. J. Lee, and D. Wawro, “Guided-mode resonance biosensors employing phase detection,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2004), paper DTuC2.
  9. R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
    [Crossref] [PubMed]
  10. S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
    [Crossref] [PubMed]
  11. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [Crossref] [PubMed]
  12. W. K. Kuo and C. H. Chang, “Phase detection sensitivity enhancement of surface plasmon resonance sensor in a heterodyne interferometer system,” Appl. Opt. 50(10), 1345–1349 (2011).
    [Crossref] [PubMed]
  13. M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
    [Crossref]
  14. W. K. Kuo and C. H. Chang, “Phase detection properties of grating-coupled surface Plasmon resonance sensors,” Opt. Express 18(19), 19656–19664 (2010).
    [Crossref] [PubMed]
  15. K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2002).
    [Crossref]

2014 (1)

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

2013 (1)

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

2011 (1)

2010 (3)

W. K. Kuo and C. H. Chang, “Phase detection properties of grating-coupled surface Plasmon resonance sensors,” Opt. Express 18(19), 19656–19664 (2010).
[Crossref] [PubMed]

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
[Crossref] [PubMed]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

2008 (1)

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

2006 (2)

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120, 187–193 (2006).

B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
[Crossref] [PubMed]

2003 (1)

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

2002 (3)

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2002).
[Crossref]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

1993 (1)

Block, I. D.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120, 187–193 (2006).

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120, 187–193 (2006).

Chang, C. H.

Chang, F. C.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Chang, J. Y.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Chen, K. H.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2002).
[Crossref]

Chen, L.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Chen, W. Y.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Chen, Z. H.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Chou, S. Y.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Cunningham, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

Cunningham, B. T.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120, 187–193 (2006).

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Ding, T. J.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

Hsu, C. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2002).
[Crossref]

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

Johnson, E. G.

Kim, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Kuo, W. K.

Lee, K. J.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Li, M.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Li, P.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

Lin, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

Lin, S. F.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Lipson, S. G.

Magnusson, R.

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
[Crossref] [PubMed]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

Ramsden, J. J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Ran, B.

Shokooh-Saremi, M.

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
[Crossref] [PubMed]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Song, S. H.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Su, D. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2002).
[Crossref]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Tan, H.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Textor, M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Tsai, Y. L.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Ussery, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Wang, C. M.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Wang, J.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Wang, S. S.

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Yang, T. H.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Yeh, S. F.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Zhang, W.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Appl. Opt. (2)

Biomaterials (1)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Opt. Commun. (1)

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Sens. Actuators B Chem. (4)

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[Crossref]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120, 187–193 (2006).

Sensors (Basel) (1)

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Other (1)

R. Magnusson, K. J. Lee, and D. Wawro, “Guided-mode resonance biosensors employing phase detection,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2004), paper DTuC2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Basic guided-mode resonance sensor structure.
Fig. 2
Fig. 2 Simulation results of transmittance (a) magnitude and (b) phase curves of transmitted p-wave and s-wave by scanning the incident angleθ.
Fig. 3
Fig. 3 Simulation results of reflectivity (a) magnitude and (b) phase curves of reflected p-wave and s-wave by scanning the incident angleθ.
Fig. 4
Fig. 4 Electro-optic heterodyne interferometer system for phase detection of the transmitted-type GMR sensor
Fig. 5
Fig. 5 Measured reflectance curves of the p-wave and s-wave by scanning the incident angleθ.
Fig. 6
Fig. 6 Measured phase change curves for (a) the reflected-type and (b) the transmitted-type GMR sensors for five different analyzer rotation angles: α = 5°, 10°, 15°, 20°, and 25°.
Fig. 7
Fig. 7 Measured phase change curves of sucrose concentration test for analyzer rotation angle of (a) α = −50°, −55°, −60° as well as (b) α = −65° and −70°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E P D = t p cos α + t s sin α
E P D = ( | t p | sin Ø p cos α + | t s | sin Ø s sin α ) + i ( | t p | cos Ø p cos α + | t s | cos Ø s sin α )
Δ Φ = tan 1 | t p | sin Ø p cos α + | t s | sin Ø s sin α | t p | cos Ø p cos α + | t s | cos Ø s sin α

Metrics