Abstract

We experimentally demonstrated the transmission of 79.86-Gb/s discrete-Fourier-transform spread 32QAM discrete multi-tone (DFT-spread 32QAM-DMT) signal over 20-km standard single-mode fiber (SSMF) utilizing directly modulated laser (DML). The experimental results show DFT-spread effectively reduces Peak-to-Average Power Ratio (PAPR) of DMT signal, and also well overcomes narrowband interference and high frequencies power attenuation. We compared different types of training sequence (TS) symbols and found that the optimized TS for channel estimation is the symbol with digital BPSK/QPSK modulation format due to its best performance against optical link noise during channel estimation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
LDPC-coded DFT-Spread DMT signal transmission employing probabilistic shaping 16/32QAM for optical interconnection

Xinxing Wu, Dongdong Zou, Ze Dong, Xue Zhao, Yifan Chen, and Fan Li
Opt. Express 27(7) 9821-9828 (2019)

Comparison of null-subcarriers reservation and adaptive notch filter for narrowband interference cancellation in intra-data center interconnect with DMT signal transmission

Dongdong Zou, Yongchao Chen, Zibin Li, Fan Li, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Xingwen Yi, and Zhaohui Li
Opt. Express 27(4) 5696-5702 (2019)

Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser

Fan Li, Jianjun Yu, Yuan Fang, Ze Dong, Xinying Li, and Lin Chen
Opt. Express 22(7) 8742-8748 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
    [Crossref]
  2. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multi-tone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010).
    [Crossref]
  3. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref] [PubMed]
  4. M. Beltrán, Y. Shi, C. Okonkwo, R. Llorente, E. Tangdiongga, and T. Koonen, “In-home networks integrating high-capacity DMT data and DVB-T over large-core GI-POF,” Opt. Express 20(28), 29769–29775 (2012).
    [Crossref] [PubMed]
  5. F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
    [Crossref]
  6. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol. 31(9), 1367–1373 (2013).
    [Crossref]
  7. A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25(8), 757–760 (2013).
    [Crossref]
  8. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
    [Crossref]
  9. W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
    [Crossref]

2014 (2)

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
[Crossref]

2013 (4)

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol. 31(9), 1367–1373 (2013).
[Crossref]

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

2012 (2)

2010 (1)

Beltrán, M.

Breyer, F.

Cartledge, J. C.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

Chen, L.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Chen, Y.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Chi, N.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Cunningham, D. G.

Fujisawa, T.

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
[Crossref]

Gao, Y.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Ge, C.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Giddings, R. P.

Hugues-Salas, E.

Ji, Y.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Kanazawa, S.

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
[Crossref]

Karar, A. S.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

Kobayashi, W.

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
[Crossref]

Koonen, A. M. J.

Koonen, T.

Lau, A. P. T.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Lee, S. C. J.

Li, F.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Li, X.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Liu, J.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Llorente, R.

Lu, C.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Okonkwo, C.

Penty, R. V.

Randel, S.

Sanjoh, H.

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
[Crossref]

Shi, Y.

Tang, J. M.

Tangdiongga, E.

Tao, L.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

van den Boom, H. P. A.

Wang, Y.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Wei, J. L.

White, I. H.

Xia, Y.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Yang, H.

Electron. Lett. (1)

W. Kobayashi, T. Fujisawa, S. Kanazawa, and H. Sanjoh, “25 Gbaud/s 4-PAM (50 Gb/s) modulation and 10-km SMF transmission with 1.3-μm InGaAlAs-based DML,” Electron. Lett. 50(4), 299–300 (2014).
[Crossref]

IEEE Netw. (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photon. Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photon. Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photon. Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Block diagrams of (a) conventional optical DMT and (b) DFT-spread optical DMT.
Fig. 2
Fig. 2 Probability density function of (a) DFT_spread DMT with BPSK TS, (b) DFT_spread DMT with QPSK TS, (c) DFT_spread DMT with 16QAM TS, (d) DFT_spread DMT with analog TS, (e) Conventional DMT.
Fig. 3
Fig. 3 CCDF curves.
Fig. 4
Fig. 4 Experimental setup. (a) Optical spectrum and (b) electrical spectrum.
Fig. 5
Fig. 5 Estimated channel response of DFT-spread DMT with (a) QPSK TS and (b) analog TS.
Fig. 6
Fig. 6 Error distributions of (a) DFT_spread DMT with BPSK TS, (b) DFT_spread DMT with QPSK TS, (c) DFT_spread DMT with 16QAM TS, (d) DFT_spread DMT with analog TS, and (e) conventional DMT.
Fig. 7
Fig. 7 Constellations of (a) DFT_spread DMT with BPSK TS, (b) DFT_spread DMT with QPSK TS, (c) DFT_spread DMT with 16QAM TS, (d) DFT_spread DMT with analog TS, and (e) conventional DMT.
Fig. 8
Fig. 8 BER versus received optical power.

Tables (1)

Tables Icon

Table 1 Parameters for the DFT-spread DMT and Conventional DMT Modulation Schemes

Metrics