Abstract

Multi-wavelength regeneration free of inter-channel crosstalk is desirable for wavelength division multiplexing (WDM) systems, especially from the cost-effectiveness point of view. This paper presents the design rules of time-interleaved multi-wavelength 2R regeneration systems based on data-pump four wave mixing (FWM) effect, and several key factors, such as FWM bandwidth, wavelength assignment, and duty cycle, are comprehensively taken into account. The total data rate of time-interleaved WDM regeneration systems along with polarization multiplexing or bidirectional transmission are discussed, which are mainly determined by temporal overlap, spectral broadening and FWM bandwidth. As two examples, an eight-wavelength unidirectional regenerator using polarization multiplexing is designed by optimizing the fiber birefringence, and a six-wavelength bidirectional regenerator is demonstrated by experiment. Each is expected to have a total data rate of about 200Gb/s for the optical RZ-OOK signals, and the wavelength number is increased at the expense of spectral efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical DQPSK signal regeneration using 2R amplitude regenerators

Masayuki Matsumoto
Opt. Express 18(1) 10-24 (2010)

Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration

Hung Nguyen Tan, Motoharu Matsuura, Tomoya Katafuchi, and Naoto Kishi
Opt. Express 17(25) 22960-22973 (2009)

Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs
Opt. Express 16(3) 1923-1928 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Keiser, Optical Fiber Communications (John Wiley & Sons, 2003).
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [Crossref]
  4. L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave Technol. 30(24), 3760–3770 (2012).
    [Crossref]
  5. M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
    [Crossref]
  6. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in 24th European Conference on Optical Communications, pp.475-476 (1998)
    [Crossref]
  7. L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
    [Crossref] [PubMed]
  8. A. G. Striegler and B. Schmauss, “Analysis and optimization of SPM-based 2R signal regeneration at 40 Gb/s,” J. Lightwave Technol. 24(7), 2835–2843 (2006).
    [Crossref]
  9. N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
    [Crossref]
  10. M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
    [Crossref]
  11. C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
    [Crossref]
  12. E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
    [Crossref]
  13. I. Monfils, C. Ito, and J. C. Cartledge, " Optical 3R Regeneration Using a Clock-Modulated Pump and Higher-Order Four-Wave Mixing," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThB6.
    [Crossref]
  14. H. Zhou, K. Qiu, and F. Tian, “Optimized all-optical amplitude reshaping by exploiting nonlinear phase shift in fiber for degenerated FWM,” Chin. Opt. Lett. 10(5), 050601 (2012).
    [Crossref]
  15. A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol. 21(9), 1892–1902 (2003).
    [Crossref]
  16. N. S. Mohd Shah and M. Matsumoto, “Analysis and experiment of all-optical time-interleaved multi-channel regeneration based on higher-order four-wave mixing in a fiber,” Opt. Commun. 284(19), 4687–4694 (2011).
    [Crossref]
  17. N. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
    [Crossref]
  18. A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, “Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber,” Opt. Express 18(7), 7150–7156 (2010).
    [Crossref] [PubMed]
  19. L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
    [Crossref] [PubMed]
  20. F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
    [Crossref]
  21. J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
    [Crossref]
  22. J. Wang, H. Ji, H. Hu, J. Yu, H. C. Mulvad, M. Galili, P. Jeppesen, and L. K. Oxenløwe, “4 × 160-Gbit/s multi-channel regeneration in a single fiber,” Opt. Express 22(10), 11456–11464 (2014).
    [Crossref] [PubMed]
  23. X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
    [Crossref]
  24. F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
    [Crossref]
  25. C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
    [Crossref]
  26. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30(12), 1458–1460 (2005).
    [Crossref] [PubMed]
  27. B. Cuenot and A. D. Ellis, “WDM signal regeneration using a single alloptical device,” Opt. Express 15(18), 11492–11499 (2007).
    [Crossref] [PubMed]
  28. S. Boscolo, S.-K. Turitsyn, and K.-J. Blow, “All-optical passive 2R regeneration for N× 40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217(1), 227–232 (2003).
    [Crossref]
  29. M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
    [Crossref] [PubMed]
  30. M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
    [Crossref] [PubMed]
  31. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
    [Crossref]
  32. K. Croussore and L. Guifang, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
    [Crossref]
  33. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  34. P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
    [Crossref]
  35. J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
    [Crossref]
  36. J. Kakande, "First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier," (2010) http://eprints.soton.ac.uk/206075/ .
    [Crossref]
  37. M. A. Sorokina, S. Sygletos, and S. K. Turitsyn, “Optimization of cascaded regenerative links based on phase sensitive amplifiers,” Opt. Lett. 38(21), 4378–4381 (2013).
    [Crossref] [PubMed]
  38. M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, “Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers,” Opt. Express 21(25), 31201–31211 (2013).
    [Crossref] [PubMed]
  39. M. Sorokina, “Design of multilevel amplitude regenerative system,” Opt. Lett. 39(8), 2499–2502 (2014).
    [Crossref] [PubMed]
  40. S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
    [Crossref] [PubMed]
  41. E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
    [Crossref]
  42. A. Mokhtar and M. Azizoğlu, “Adaptive wavelength routing in all-optical networks,” IEEE Netw. 6(2), 197–206 (1998).
    [Crossref]
  43. H. Nguyen Tan, T. Inoue, K. Tanizawa, S. Petit, Y. Oikawa, S. Takasaka, T. Yagi, and S. Namiki, "Counter-Dithering Pump Scheme for Cascaded Degenerate FWM Based Wavelength Converter," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3F.4. 
    [Crossref]
  44. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, " Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
    [Crossref]
  45. Q. Lin, "Polarization and fiber nonlinearities," University of Rochester (Doctor Thesis, 2006).
  46. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
    [Crossref]
  47. G. P. Agrawal, Nonlinear fiber optics (Academic, 2000).
  48. X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
    [Crossref]
  49. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  50. J. Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [Crossref]

2014 (3)

2013 (5)

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

M. A. Sorokina, S. Sygletos, and S. K. Turitsyn, “Optimization of cascaded regenerative links based on phase sensitive amplifiers,” Opt. Lett. 38(21), 4378–4381 (2013).
[Crossref] [PubMed]

M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, “Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers,” Opt. Express 21(25), 31201–31211 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (6)

L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave Technol. 30(24), 3760–3770 (2012).
[Crossref]

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

H. Zhou, K. Qiu, and F. Tian, “Optimized all-optical amplitude reshaping by exploiting nonlinear phase shift in fiber for degenerated FWM,” Chin. Opt. Lett. 10(5), 050601 (2012).
[Crossref]

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
[Crossref]

2011 (4)

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

N. S. Mohd Shah and M. Matsumoto, “Analysis and experiment of all-optical time-interleaved multi-channel regeneration based on higher-order four-wave mixing in a fiber,” Opt. Commun. 284(19), 4687–4694 (2011).
[Crossref]

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

2010 (3)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

N. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[Crossref]

A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, “Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber,” Opt. Express 18(7), 7150–7156 (2010).
[Crossref] [PubMed]

2008 (5)

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[Crossref] [PubMed]

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[Crossref]

M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
[Crossref] [PubMed]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (4)

2005 (2)

M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30(12), 1458–1460 (2005).
[Crossref] [PubMed]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

2004 (2)

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
[Crossref]

2003 (2)

A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol. 21(9), 1892–1902 (2003).
[Crossref]

S. Boscolo, S.-K. Turitsyn, and K.-J. Blow, “All-optical passive 2R regeneration for N× 40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217(1), 227–232 (2003).
[Crossref]

2001 (1)

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

1998 (1)

A. Mokhtar and M. Azizoğlu, “Adaptive wavelength routing in all-optical networks,” IEEE Netw. 6(2), 197–206 (1998).
[Crossref]

Agata, A.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Agrawal, G. P.

Akiba, S.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Azizoglu, M.

A. Mokhtar and M. Azizoğlu, “Adaptive wavelength routing in all-optical networks,” IEEE Netw. 6(2), 197–206 (1998).
[Crossref]

Blow, K.-J.

S. Boscolo, S.-K. Turitsyn, and K.-J. Blow, “All-optical passive 2R regeneration for N× 40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217(1), 227–232 (2003).
[Crossref]

Bogoni, A.

Bogris, A.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol. 21(9), 1892–1902 (2003).
[Crossref]

Boscolo, S.

S. Boscolo, S.-K. Turitsyn, and K.-J. Blow, “All-optical passive 2R regeneration for N× 40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217(1), 227–232 (2003).
[Crossref]

Cartledge, J. C.

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[Crossref]

Chen, Z.-Y.

Ciaramella, E.

E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
[Crossref]

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Croussore, K.

K. Croussore and L. Guifang, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[Crossref]

Cuenot, B.

Curti, F.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Cvecek, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Edagawa, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Eggleton, B. J.

M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Ellis, A. D.

M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, “Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers,” Opt. Express 21(25), 31201–31211 (2013).
[Crossref] [PubMed]

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

B. Cuenot and A. D. Ellis, “WDM signal regeneration using a single alloptical device,” Opt. Express 15(18), 11492–11499 (2007).
[Crossref] [PubMed]

Essiambre, R.-J.

Eyal, A.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Finot, C.

Frascella, P.

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

Freude, W.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

Fu, X.

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

Galili, M.

Gruner-Nielsen, L.

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

Grüner-Nielsen, L.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Guifang, L.

K. Croussore and L. Guifang, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[Crossref]

Gunning, F. C. G.

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

Guo, X.

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Howe, J.

Hu, H.

Ibrahim, S. K.

Ito, C.

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[Crossref]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Jeppesen, P.

Ji, H.

Jiang, H.-Y.

Kakande, J.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Kouloumentas, C.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

Lakoba, T. I.

Lei, G. K. P.

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

Leuchs, G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Leuthold, J.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, “Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber,” Opt. Express 18(7), 7150–7156 (2010).
[Crossref] [PubMed]

Libin Fu, V.

M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Lin, Q.

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Luo, B.

Mamyshev, P. V.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in 24th European Conference on Optical Communications, pp.475-476 (1998)
[Crossref]

Matsumoto, M.

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

N. S. Mohd Shah and M. Matsumoto, “Analysis and experiment of all-optical time-interleaved multi-channel regeneration based on higher-order four-wave mixing in a fiber,” Opt. Commun. 284(19), 4687–4694 (2011).
[Crossref]

N. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[Crossref]

M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
[Crossref] [PubMed]

M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
[Crossref] [PubMed]

Meissner, M.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Meng, T.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Miao, W.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Mohd Shah, N. S.

N. S. Mohd Shah and M. Matsumoto, “Analysis and experiment of all-optical time-interleaved multi-channel regeneration based on higher-order four-wave mixing in a fiber,” Opt. Commun. 284(19), 4687–4694 (2011).
[Crossref]

Mokhtar, A.

A. Mokhtar and M. Azizoğlu, “Adaptive wavelength routing in all-optical networks,” IEEE Netw. 6(2), 197–206 (1998).
[Crossref]

Morita, I.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Moss,

M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Mukasa, K.

Mulvad, H. C.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

O’Gorman, J.

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Oxenløwe, L. K.

Pan, W.

Parmigiani, F.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[Crossref] [PubMed]

Petropoulos, P.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[Crossref] [PubMed]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[Crossref] [PubMed]

Phelan, R.

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Provost, L.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[Crossref] [PubMed]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[Crossref] [PubMed]

Qiu, K.

F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
[Crossref]

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

H. Zhou, K. Qiu, and F. Tian, “Optimized all-optical amplitude reshaping by exploiting nonlinear phase shift in fiber for degenerated FWM,” Chin. Opt. Lett. 10(5), 050601 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[Crossref] [PubMed]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[Crossref] [PubMed]

Rochette, M.

M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Sakaguchi, H.

Sanuki, K.

Schmauss, B.

A. G. Striegler and B. Schmauss, “Analysis and optimization of SPM-based 2R signal regeneration at 40 Gb/s,” J. Lightwave Technol. 24(7), 2835–2843 (2006).
[Crossref]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Shah, N. M.

N. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[Crossref]

Shu, C.

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavík, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Sorokina, M.

Sorokina, M. A.

Sponsel, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Striegler, A. G.

A. G. Striegler and B. Schmauss, “Analysis and optimization of SPM-based 2R signal regeneration at 40 Gb/s,” J. Lightwave Technol. 24(7), 2835–2843 (2006).
[Crossref]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Sun, B.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Sygletos, S.

M. A. Sorokina, S. Sygletos, and S. K. Turitsyn, “Optimization of cascaded regenerative links based on phase sensitive amplifiers,” Opt. Lett. 38(21), 4378–4381 (2013).
[Crossref] [PubMed]

M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, “Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers,” Opt. Express 21(25), 31201–31211 (2013).
[Crossref] [PubMed]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol. 21(9), 1892–1902 (2003).
[Crossref]

Ta’eed, D. J.

M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Thévenaz, L.

Tian, F.

Tomkos, I.

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

Trillo, S.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Tsang, H. K.

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

Tsolakidis, S.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

Tsuritani, T.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Tur, M.

Turitsyn, S.

Turitsyn, S. K.

Turitsyn, S.-K.

S. Boscolo, S.-K. Turitsyn, and K.-J. Blow, “All-optical passive 2R regeneration for N× 40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217(1), 227–232 (2003).
[Crossref]

Vasilyev, M.

Wang, J.

J. Wang, H. Ji, H. Hu, J. Yu, H. C. Mulvad, M. Galili, P. Jeppesen, and L. K. Oxenløwe, “4 × 160-Gbit/s multi-channel regeneration in a single fiber,” Opt. Express 22(10), 11456–11464 (2014).
[Crossref] [PubMed]

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Wang, W.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Weerasuriya, R.

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Wen, F.

F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
[Crossref]

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

Willner, A. E.

Winzer, P. J.

Wu, B.-J.

F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
[Crossref]

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

Wu, X.

Xu, C.

Yan, L.

Yan, L.-S.

Yang, E.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Ye, J.

Yi, A.

Yi, A.-L.

Yoshikane, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

Yu, J.

J. Wang, H. Ji, H. Hu, J. Yu, H. C. Mulvad, M. Galili, P. Jeppesen, and L. K. Oxenløwe, “4 × 160-Gbit/s multi-channel regeneration in a single fiber,” Opt. Express 22(10), 11456–11464 (2014).
[Crossref] [PubMed]

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

Yuan, H.

F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
[Crossref]

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

Zadok, A.

Zhou, H.

Zhou, X.-Y.

F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
[Crossref]

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

Zilka, E.

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (5)

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 412–420 (2004).
[Crossref]

M. Rochette, V. Libin Fu, D. J. Ta’eed, Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

C. Ito and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[Crossref]

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron. 18(2), 689–700 (2012).
[Crossref]

IEEE Netw. (1)

A. Mokhtar and M. Azizoğlu, “Adaptive wavelength routing in all-optical networks,” IEEE Netw. 6(2), 197–206 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (7)

X. Guo, G. K. P. Lei, X. Fu, H. K. Tsang, and C. Shu, “Polarization-insensitive phase-preserving regenerator based on a fiber optical parametric amplifier with dual orthogonal pumps,” IEEE Photon. Technol. Lett. 25(4), 362–364 (2013).
[Crossref]

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, “Four-channel all-fiber dispersion-managed 2R regenerator,” IEEE Photon. Technol. Lett. 20(13), 1169–1171 (2008).
[Crossref]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

K. Croussore and L. Guifang, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[Crossref]

P. Frascella, S. Sygletos, F. C. G. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[Crossref]

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

N. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[Crossref]

IEEE Photonics J (1)

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R Regeneration of 4 × 40-Gbit/s WDM Signals in a Single Fiber,” IEEE Photonics J 4(5), 1816–1822 (2012).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Opt. Commun. (3)

X.-Y. Zhou, B.-J. Wu, F. Wen, H. Yuan, and K. Qiu, “Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM,” Opt. Commun. 308, 1–6 (2013).
[Crossref]

S. Boscolo, S.-K. Turitsyn, and K.-J. Blow, “All-optical passive 2R regeneration for N× 40 Gbit/s WDM transmission using NOLM and novel filtering technique,” Opt. Commun. 217(1), 227–232 (2003).
[Crossref]

N. S. Mohd Shah and M. Matsumoto, “Analysis and experiment of all-optical time-interleaved multi-channel regeneration based on higher-order four-wave mixing in a fiber,” Opt. Commun. 284(19), 4687–4694 (2011).
[Crossref]

Opt. Express (10)

A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, “Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber,” Opt. Express 18(7), 7150–7156 (2010).
[Crossref] [PubMed]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[Crossref] [PubMed]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[Crossref] [PubMed]

M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
[Crossref] [PubMed]

M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
[Crossref] [PubMed]

J. Wang, H. Ji, H. Hu, J. Yu, H. C. Mulvad, M. Galili, P. Jeppesen, and L. K. Oxenløwe, “4 × 160-Gbit/s multi-channel regeneration in a single fiber,” Opt. Express 22(10), 11456–11464 (2014).
[Crossref] [PubMed]

B. Cuenot and A. D. Ellis, “WDM signal regeneration using a single alloptical device,” Opt. Express 15(18), 11492–11499 (2007).
[Crossref] [PubMed]

M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, “Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers,” Opt. Express 21(25), 31201–31211 (2013).
[Crossref] [PubMed]

S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19(26), B938–B945 (2011).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

F. Wen, B.-J. Wu, X.-Y. Zhou, H. Yuan, and K. Qiu, “All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering,” Opt. Fiber Technol. 20(3), 274–279 (2014).
[Crossref]

Opt. Lett. (3)

Other (8)

J. Kakande, "First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier," (2010) http://eprints.soton.ac.uk/206075/ .
[Crossref]

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in 24th European Conference on Optical Communications, pp.475-476 (1998)
[Crossref]

G. Keiser, Optical Fiber Communications (John Wiley & Sons, 2003).

I. Monfils, C. Ito, and J. C. Cartledge, " Optical 3R Regeneration Using a Clock-Modulated Pump and Higher-Order Four-Wave Mixing," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThB6.
[Crossref]

G. P. Agrawal, Nonlinear fiber optics (Academic, 2000).

H. Nguyen Tan, T. Inoue, K. Tanizawa, S. Petit, Y. Oikawa, S. Takasaka, T. Yagi, and S. Namiki, "Counter-Dithering Pump Scheme for Cascaded Degenerate FWM Based Wavelength Converter," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3F.4. 
[Crossref]

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, " Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Q. Lin, "Polarization and fiber nonlinearities," University of Rochester (Doctor Thesis, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Frequency dependency of idler powers in the data-pump FWM. (a) The frequency relationship of the idler, pump and idler waves. (b) FWM bandwidth for a given auxiliary frequency of 192.1THz. In the OptiSystem simulation, the pump and auxiliary powers are 20dBm and 14dBm, respectively. The HNLF’s parameters used here are listed in Table 1.
Fig. 2
Fig. 2 Wavelength assignment free of the spectral overlap between the higher-order FWM products and the first-order idlers as regenerated signals.
Fig. 3
Fig. 3 Optimization of duty cycle in time-interleaving regeneration by means of the inter-modulation (IM) parameter. The auxiliary power is 14dBm in all cases.
Fig. 4
Fig. 4 The upper and lower DC limits versus the data rate. Two time-interleaving cases with or without polarization multiplexing are given here. The slopes of the lower DC limit are equal to the minimal pulse width.
Fig. 5
Fig. 5 The relation of inter-modulation and duty cycle with polarization multiplexing (a) DGD = 0 ps/km, (b) DGD = 60 ps/km. The frequencies of orthogonally polarized pump are 192.9 THz to 193.5 THz, and the frequency of 45° linearly polarized auxiliary is 191.4 THz.
Fig. 6
Fig. 6 Simulation diagram of an eight-wavelength unidirectional regeneration system using time interleaving and polarization multiplexing
Fig. 7
Fig. 7 The Q values of the input and output signals for the eight-wavelength regeneration system
Fig. 8
Fig. 8 Experimental setup for the bidirectional six-wavelength regeneration system
Fig. 9
Fig. 9 Measured spectra for the bidirectional six-wavelength regeneration system
Fig. 10
Fig. 10 Measured eye diagrams for the bidirectional six-wavelength regeneration system
Fig. 11
Fig. 11 Measured BER curves for the bidirectional six-wavelength regeneration system

Tables (2)

Tables Icon

Table 1 The HNLF’s Parameters

Tables Icon

Table 2 Wavelength Assignment

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = l F l ( x , y ) A l ( z , t ) e x p ( i β l z i ω l t )
A l z + α 2 A l + β l ( 1 ) A l t + β l ( 2 ) 2 A l t 2 = i γ m , n , k , l D m n D p A m A n A k * e x p [ i ( Δ β m n k l z 2 π Δ f m n k l t ) ]
Δ β = 2 β p + β a β i
Δ β = 1 6 β 3 [ 2 ( f p f 0 ) 3 ( f a f 0 ) 3 [ 2 ( f p f 0 ) ( f a f 0 ) ] 3 ]
B N B F W M
B N 2 5 Δ F
I M = | log ( P M / P S ) |
T p min R b d c 0.5 / N
Δ = ( d c max - d c ) / R b
C R / / = R b max N = 0.5 / T p min
C R = 1 / T p min = 2 r p C R / /
η s = C R 2 N Δ f
η s / / = 1 4 N Δ f T p min or η s = r p 2 N Δ f T p min

Metrics