Abstract

We describe a leakage radiation microscope technique that can be used to extend the leakage radiation microscopy to optically non-transparent samples. In particular, two experiments are presented, first to demonstrate that acquired images with our configuration correspond to the leakage radiation phenomenon and second, to show possible applications by directly imaging a plasmonic structure that previously could only be imaged with a near-field scanning optical microscope. It is shown that the measured surface plasmon wavelength and propagation length agree with theoretically-calculated values. This configuration opens the possibility to study important effects where samples are optically non-transparent, as in plasmonic cavities and single hole plasmonic excitation, without the use of time-consuming near-field scanning optical microscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses

Charles J. Regan, Robier Rodriguez, Shivkumar C. Gourshetty, Luis Grave de Peralta, and Ayrton A. Bernussi
Opt. Express 20(19) 20827-20834 (2012)

Study of interference between surface plasmon polaritons by leakage radiation microscopy

Luis Grave de Peralta
J. Opt. Soc. Am. B 27(8) 1513-1517 (2010)

Dielectric optical elements for surface plasmons

Andreas Hohenau, Joachim R. Krenn, Andrey L. Stepanov, Aurelien Drezet, Harald Ditlbacher, Bernhard Steinberger, Alfred Leitner, and Franz R. Aussenegg
Opt. Lett. 30(8) 893-895 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. Hi. Spe. Elec. Syst. 21(01), 1250006 (2012).
    [Crossref]
  2. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
    [Crossref] [PubMed]
  3. I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [Crossref]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  5. S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
    [Crossref]
  6. S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
    [Crossref]
  7. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
    [Crossref] [PubMed]
  8. F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
    [Crossref]
  9. E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
    [Crossref] [PubMed]
  10. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  11. J. W. P. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices,” Mater. Sci. Eng. 33(1), 1–50 (2001).
    [Crossref]
  12. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
    [Crossref] [PubMed]
  13. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
    [Crossref] [PubMed]
  14. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
    [Crossref] [PubMed]
  15. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
    [Crossref]
  16. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
    [Crossref] [PubMed]
  17. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
    [Crossref]
  18. A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19(25), 25749–25762 (2011).
    [Crossref] [PubMed]
  19. O. Mollet, S. Huant, and A. Drezet, “Scanning plasmonic microscopy by image reconstruction from the Fourier space,” Opt. Express 20(27), 28923–28928 (2012).
    [Crossref] [PubMed]
  20. J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
    [Crossref]
  21. A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008).
    [Crossref] [PubMed]
  22. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
    [Crossref] [PubMed]
  23. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guide by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [Crossref]
  24. F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos-optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
    [Crossref] [PubMed]
  25. J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [Crossref] [PubMed]
  26. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, 2007).
  27. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
    [Crossref] [PubMed]
  29. S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
    [Crossref]
  30. C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
    [Crossref] [PubMed]

2014 (1)

F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
[Crossref]

2013 (2)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos-optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[Crossref] [PubMed]

2012 (6)

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

D. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. Hi. Spe. Elec. Syst. 21(01), 1250006 (2012).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
[Crossref] [PubMed]

O. Mollet, S. Huant, and A. Drezet, “Scanning plasmonic microscopy by image reconstruction from the Fourier space,” Opt. Express 20(27), 28923–28928 (2012).
[Crossref] [PubMed]

2011 (3)

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19(25), 25749–25762 (2011).
[Crossref] [PubMed]

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

2010 (2)

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

2009 (5)

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[Crossref] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[Crossref] [PubMed]

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

2005 (1)

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

2001 (1)

J. W. P. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices,” Mater. Sci. Eng. 33(1), 1–50 (2001).
[Crossref]

1998 (1)

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guide by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agrawal, A.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Ajimo, J.

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

Aksyuk, V. A.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Bartal, G.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Baudrion, A.-L.

Bernussi, A. A.

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
[Crossref] [PubMed]

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Boltasseva, A.

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Bozhevolnyi, S. I.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[Crossref] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[Crossref] [PubMed]

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

Brucoli, G.

Bu, J.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guide by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Burns, M. J.

F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos-optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Chang, S. H.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

Chesnutt, C. F.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Chichkov, B. N.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coello, V.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

Colas des Francs, G.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

de Léon-Pérez, F.

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Dereux, A.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

des Francs, G. C.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Dintinger, J.

Ditlbacher, H.

Drezet, A.

Ebbesen, T. W.

Esteban, R.

Evlyukhin, A. B.

Finot, C.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Frisbie, S. P.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Garcia, C.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

García-Vidal, F. J.

Genet, C.

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Gonzalez, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Gourshetty, S. C.

Grandidier, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Grandidier, J. J.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Grave de Peralta, L.

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
[Crossref] [PubMed]

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Gray, S. K.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

Han, Z.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

Henzie, J.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

Hohenau, A.

Holtz, M. E.

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Hsu, J. W. P.

J. W. P. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices,” Mater. Sci. Eng. 33(1), 1–50 (2001).
[Crossref]

Hu, X.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Huant, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kern, K.

Kiyan, R.

Koev, S. T.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Krenn, J. R.

Krishnan, A.

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Kuttge, M.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Kwak, E. S.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

Lezec, H. J.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Mahboub, O.

Marchante, M.

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

Markey, L.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Martin-Moreno, L.

Martín-Moreno, L.

Massenot, S.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Merlo, J. M.

F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
[Crossref]

Mollet, O.

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Mynbaev, D.

D. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. Hi. Spe. Elec. Syst. 21(01), 1250006 (2012).
[Crossref]

Naughton, M. J.

F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos-optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Odom, T. W.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

Oulton, R. F.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Passinger, S.

Polman, A.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Quidant, R.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Radko, I. P.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[Crossref] [PubMed]

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Regan, C. J.

Reinhardt, C.

Renger, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Rodriguez, R.

Schatz, G. C.

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

Shih, C. K.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Sorger, I.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guide by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Stein, B.

Stepanov, A. L.

Sukharenko, V.

D. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. Hi. Spe. Elec. Syst. 21(01), 1250006 (2012).
[Crossref]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guide by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Vogelgesang, R.

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

Wang, Y.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Weeber, J. C.

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Weeber, J.-C.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Wei, H.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Xu, H.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Ye, F.

F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
[Crossref]

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos-optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[Crossref] [PubMed]

Ye, Z.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yin, X.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.-C.

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Zhang, X.

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Appl. Phys. B (1)

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

IEEE Photonics Journal (1)

S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photonics Journal 1(2), 153–162 (2009).
[Crossref]

Int. J. Hi. Spe. Elec. Syst. (1)

D. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. Hi. Spe. Elec. Syst. 21(01), 1250006 (2012).
[Crossref]

J. Appl. Phys. (1)

J. Ajimo, M. Marchante, A. Krishnan, A. A. Bernussi, and L. Grave de Peralta, “Plasmonic implementation of a quantum eraser for imaging applications,” J. Appl. Phys. 108(6), 063110 (2010).
[Crossref]

Mater. Sci. Eng. (1)

J. W. P. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices,” Mater. Sci. Eng. 33(1), 1–50 (2001).
[Crossref]

Nano Lett. (6)

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005).
[Crossref] [PubMed]

F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos-optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013).
[Crossref] [PubMed]

J. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

F. Ye, J. M. Merlo, M. J. Burns, and M. J. Naughton, “Optical and electrical mappings of surface plasmon cavity modes,” Nanophotonics 3(1-2), 33–49 (2014).
[Crossref]

Nat. Commun. (1)

I. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Opt. Express (8)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[Crossref] [PubMed]

A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[Crossref] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[Crossref] [PubMed]

Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19(25), 25749–25762 (2011).
[Crossref] [PubMed]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20(19), 20827–20834 (2012).
[Crossref] [PubMed]

O. Mollet, S. Huant, and A. Drezet, “Scanning plasmonic microscopy by image reconstruction from the Fourier space,” Opt. Express 20(27), 28923–28928 (2012).
[Crossref] [PubMed]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guide by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Phys. Rev. Lett. (1)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Plasmonics (1)

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Science (1)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Other (2)

S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic LRM experimental setup used for the acquisition of images. (b) SEM image (false color) of the sample structure, where w is the width of the grating and p the pitch; t A g , t P M M A and t I T O are the thicknesses of the Ag, PMMA and ITO films, respectively. The arrows represent the wave vector k o and electric field of the excitation field E . The scale bars represent 200 nm in the vertical and horizontal directions and the color chart shows the materials used in the sample.
Fig. 2
Fig. 2 LRM image acquired by the proposed configuration using NA = 1.4 (a) and far field image using NA = 0.6 (b). The excitation wavelength was 473 nm. The inset to (a) is an SEM image of the grating with w = 150 nm and p = 440 nm. Inset scale bar: 1 μm. (c) Intensity registered in the red line in (a) using logarithmic scale. The red arrow shows an exponential decay shape. (d) Power spectrum calculated from the intensity profile shown in (c). The red line shows the maximum used NA.
Fig. 3
Fig. 3 (a) Fourier space image normalized to the excitation wavenumber of the leaked field in Fig. 2(a). The white circle represents NA = 1.4, while red and orange circles are NA = 1 and 0.5, respectively. (b) Transversal cut made in the yellow line in (a). The arrows represent the distance A measured at FWHM.
Fig. 4
Fig. 4 (a) Optical image taken with the proposed LRM of a plasmonic cavity composed of four perpendicular gratings with width 150 nm and pitch 440 nm. The excitation wavelength was 473 nm. The inset is an SEM image, with a 2 μm the scale bar. (b) Detailed view inside the dashed rectangle in (a). (c) Intensity profile measured along the red line in (b), showing the FWHM.
Fig. 5
Fig. 5 (a) Fourier space image of the plasmonic cavity presented in Fig. 4(a). The orange, red, purple and white circles are associated with NA = 0.5, 1.0, 1.31 and = 1.4, respectively, as indicated. The purple dashed lines are related to k x ' displaced by G . (b) k-space analysis of experimental Fourier space image in (a). The scale has been changed in order to allow the observation of the complete scheme, but the proportion is the same. The vectors G , k x ' and k p a t t are the wavevectors of the grating, SP and the observed pattern respectively. The distance between points A and A’ shows the wavenumber of the observed pattern.
Fig. 6
Fig. 6 (a) LRM image acquired by the proposed configuration using a sample made by FIB. The excitation wavelength was 473 nm. The inset to (a) is an SEM image of the grating with w = 150 nm and p = 440 nm; scale bar: 1 μm. (b) Fourier space image of (a) where the circles represent NA = 0.5, NA = 1.0, NA = 1.3 and NA = 1.4, orange, red, purple and white, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x = k S ϵ S ϵ m / ( ϵ S + ϵ m ) ,
k x 2 k o 2 = k 0 w p tan ( k o h ) ,

Metrics