Abstract

Strong saturated absorption at nanowatt power levels has been demonstrated using metastable xenon in a high finesse optical cavity. The use of metastable xenon allows a high quality factor of Q = 2 × 108 to be achieved at relatively high atomic densities without any contamination or damage to the optical surfaces, which is often a problem when using high-density rubidium or other alkali atoms. This technique provides a relatively straightforward way to produce nonlinearities at the single-photon level with possible applications in quantum communications and computing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396(6711), 537–542 (1998).
    [Crossref]
  2. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7(1), 137 (2005).
    [Crossref]
  3. B. T. Kirby and J. D. Franson, “Nonlocal interferometry using macroscopic coherent states and weak nonlinearities,” Phys. Rev. A 87(5), 053822 (2013).
    [Crossref]
  4. H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81(5), 053829 (2010).
    [Crossref]
  5. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
    [Crossref]
  6. V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7(2), 138–141 (2012).
    [Crossref]
  7. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
    [Crossref] [PubMed]
  8. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
    [Crossref] [PubMed]
  9. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
    [Crossref] [PubMed]
  10. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
    [Crossref] [PubMed]
  11. M. Lai, J. D. Franson, and T. B. Pittman, “Transmission degradation and preservation for tapered optical fibers in rubidium vapor,” Appl. Opt. 52(12), 2595–2601 (2013).
    [Crossref] [PubMed]
  12. B. T. Kirby, G. T. Hickman, T. B. Pittman, and J. D. Franson, “Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity,” http://arxiv.org/abs/1403.6340v1 (2014).
  13. H. You and J. D. Franson, “Theoretical comparison of quantum Zeno gates and logic gates based on the cross-Kerr nonlinearity,” Quantum Inf. Proc. 11(6), 1627–1651 (2012).
    [Crossref]
  14. M. Walhout, A. Witte, and S. L. Rolston, “Precision measurement of the metastable 6s[3/2]_2 lifetime in xenon,” Phys. Rev. Lett. 72(18), 2843–2846 (1994).
    [Crossref] [PubMed]
  15. T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88(5), 053804 (2013).
    [Crossref]
  16. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73(6), 062305 (2006).
    [Crossref]
  17. R. J. Cedolin, “Laser-induced fluorescence diagnostics of xenon plasmas,” Ph.D. Thesis, Stanford University (1997).
  18. H. S. Uhm, P. Y. Oh, and E. H. Choi, “Properties of excited xenon atoms in an alternating current plasma display panel,” Appl. Phys. Lett. 93(21), 211501 (2008).
    [Crossref]
  19. T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
    [Crossref]
  20. A. S. Pine, C. J. Glassbrenner, and J. A. Kafalas, “Pressure-Tuned GaAs Diode-Laser Absorption Spectroscopy of Xenon Hyperfine Structure,” IEEE J. Quantum Electron. 9(8), 800–807 (1973).
    [Crossref]
  21. B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys. 77(2), 111–115 (2009).
    [Crossref]

2014 (2)

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

2013 (3)

M. Lai, J. D. Franson, and T. B. Pittman, “Transmission degradation and preservation for tapered optical fibers in rubidium vapor,” Appl. Opt. 52(12), 2595–2601 (2013).
[Crossref] [PubMed]

B. T. Kirby and J. D. Franson, “Nonlocal interferometry using macroscopic coherent states and weak nonlinearities,” Phys. Rev. A 87(5), 053822 (2013).
[Crossref]

T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88(5), 053804 (2013).
[Crossref]

2012 (2)

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7(2), 138–141 (2012).
[Crossref]

H. You and J. D. Franson, “Theoretical comparison of quantum Zeno gates and logic gates based on the cross-Kerr nonlinearity,” Quantum Inf. Proc. 11(6), 1627–1651 (2012).
[Crossref]

2010 (3)

H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81(5), 053829 (2010).
[Crossref]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
[Crossref]

2009 (1)

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys. 77(2), 111–115 (2009).
[Crossref]

2008 (1)

H. S. Uhm, P. Y. Oh, and E. H. Choi, “Properties of excited xenon atoms in an alternating current plasma display panel,” Appl. Phys. Lett. 93(21), 211501 (2008).
[Crossref]

2006 (1)

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73(6), 062305 (2006).
[Crossref]

2005 (1)

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7(1), 137 (2005).
[Crossref]

1998 (1)

P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396(6711), 537–542 (1998).
[Crossref]

1995 (1)

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

1994 (1)

M. Walhout, A. Witte, and S. L. Rolston, “Precision measurement of the metastable 6s[3/2]_2 lifetime in xenon,” Phys. Rev. Lett. 72(18), 2843–2846 (1994).
[Crossref] [PubMed]

1982 (1)

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

1973 (1)

A. S. Pine, C. J. Glassbrenner, and J. A. Kafalas, “Pressure-Tuned GaAs Diode-Laser Absorption Spectroscopy of Xenon Hyperfine Structure,” IEEE J. Quantum Electron. 9(8), 800–807 (1973).
[Crossref]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

Chen, Y.-F.

H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81(5), 053829 (2010).
[Crossref]

Choi, E. H.

H. S. Uhm, P. Y. Oh, and E. H. Choi, “Properties of excited xenon atoms in an alternating current plasma display panel,” Appl. Phys. Lett. 93(21), 211501 (2008).
[Crossref]

de Leon, N. P.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

Eilenberger, D. J.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

Franson, J. D.

B. T. Kirby and J. D. Franson, “Nonlocal interferometry using macroscopic coherent states and weak nonlinearities,” Phys. Rev. A 87(5), 053822 (2013).
[Crossref]

T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88(5), 053804 (2013).
[Crossref]

M. Lai, J. D. Franson, and T. B. Pittman, “Transmission degradation and preservation for tapered optical fibers in rubidium vapor,” Appl. Opt. 52(12), 2595–2601 (2013).
[Crossref] [PubMed]

H. You and J. D. Franson, “Theoretical comparison of quantum Zeno gates and logic gates based on the cross-Kerr nonlinearity,” Quantum Inf. Proc. 11(6), 1627–1651 (2012).
[Crossref]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

B. T. Kirby, G. T. Hickman, T. B. Pittman, and J. D. Franson, “Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity,” http://arxiv.org/abs/1403.6340v1 (2014).

Gaeta, A. L.

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7(2), 138–141 (2012).
[Crossref]

Glassbrenner, C. J.

A. S. Pine, C. J. Glassbrenner, and J. A. Kafalas, “Pressure-Tuned GaAs Diode-Laser Absorption Spectroscopy of Xenon Hyperfine Structure,” IEEE J. Quantum Electron. 9(8), 800–807 (1973).
[Crossref]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

Grangier, P.

P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396(6711), 537–542 (1998).
[Crossref]

Happer, W.

T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
[Crossref]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Hickman, G. T.

B. T. Kirby, G. T. Hickman, T. B. Pittman, and J. D. Franson, “Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity,” http://arxiv.org/abs/1403.6340v1 (2014).

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

Hughes, I. G.

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys. 77(2), 111–115 (2009).
[Crossref]

Jau, Y.-Y.

T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
[Crossref]

Jones, D. E.

T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88(5), 053804 (2013).
[Crossref]

Kafalas, J. A.

A. S. Pine, C. J. Glassbrenner, and J. A. Kafalas, “Pressure-Tuned GaAs Diode-Laser Absorption Spectroscopy of Xenon Hyperfine Structure,” IEEE J. Quantum Electron. 9(8), 800–807 (1973).
[Crossref]

Kalb, N.

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

Kimble, H. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

Kirby, B. T.

B. T. Kirby and J. D. Franson, “Nonlocal interferometry using macroscopic coherent states and weak nonlinearities,” Phys. Rev. A 87(5), 053822 (2013).
[Crossref]

B. T. Kirby, G. T. Hickman, T. B. Pittman, and J. D. Franson, “Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity,” http://arxiv.org/abs/1403.6340v1 (2014).

Lai, M.

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

Levenson, J. A.

P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396(6711), 537–542 (1998).
[Crossref]

Liu, L. R.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

Lo, H.-Y.

H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81(5), 053829 (2010).
[Crossref]

Lukin, M. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

Mabuchi, H.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

Morgan, S. W.

T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
[Crossref]

Munro, W. J.

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7(1), 137 (2005).
[Crossref]

Nemoto, K.

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7(1), 137 (2005).
[Crossref]

Oh, P. Y.

H. S. Uhm, P. Y. Oh, and E. H. Choi, “Properties of excited xenon atoms in an alternating current plasma display panel,” Appl. Phys. Lett. 93(21), 211501 (2008).
[Crossref]

Pine, A. S.

A. S. Pine, C. J. Glassbrenner, and J. A. Kafalas, “Pressure-Tuned GaAs Diode-Laser Absorption Spectroscopy of Xenon Hyperfine Structure,” IEEE J. Quantum Electron. 9(8), 800–807 (1973).
[Crossref]

Pittman, T. B.

M. Lai, J. D. Franson, and T. B. Pittman, “Transmission degradation and preservation for tapered optical fibers in rubidium vapor,” Appl. Opt. 52(12), 2595–2601 (2013).
[Crossref] [PubMed]

T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88(5), 053804 (2013).
[Crossref]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

B. T. Kirby, G. T. Hickman, T. B. Pittman, and J. D. Franson, “Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity,” http://arxiv.org/abs/1403.6340v1 (2014).

Poizat, J.-P.

P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396(6711), 537–542 (1998).
[Crossref]

Reiserer, A.

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

Rempe, G.

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

Ritter, S.

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

Rolston, S. L.

M. Walhout, A. Witte, and S. L. Rolston, “Precision measurement of the metastable 6s[3/2]_2 lifetime in xenon,” Phys. Rev. Lett. 72(18), 2843–2846 (1994).
[Crossref] [PubMed]

Saha, K.

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7(2), 138–141 (2012).
[Crossref]

Shapiro, J. H.

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73(6), 062305 (2006).
[Crossref]

Sherlock, B. E.

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys. 77(2), 111–115 (2009).
[Crossref]

Smith, P. W.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

Spiller, T. P.

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7(1), 137 (2005).
[Crossref]

Su, P.-C.

H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81(5), 053829 (2010).
[Crossref]

Thompson, J. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

Tiecke, T. G.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

Tsang, W. T.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

Uhm, H. S.

H. S. Uhm, P. Y. Oh, and E. H. Choi, “Properties of excited xenon atoms in an alternating current plasma display panel,” Appl. Phys. Lett. 93(21), 211501 (2008).
[Crossref]

Venkataraman, V.

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7(2), 138–141 (2012).
[Crossref]

Vuletic, V.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

Walhout, M.

M. Walhout, A. Witte, and S. L. Rolston, “Precision measurement of the metastable 6s[3/2]_2 lifetime in xenon,” Phys. Rev. Lett. 72(18), 2843–2846 (1994).
[Crossref] [PubMed]

Witte, A.

M. Walhout, A. Witte, and S. L. Rolston, “Precision measurement of the metastable 6s[3/2]_2 lifetime in xenon,” Phys. Rev. Lett. 72(18), 2843–2846 (1994).
[Crossref] [PubMed]

Xia, T.

T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
[Crossref]

You, H.

H. You and J. D. Franson, “Theoretical comparison of quantum Zeno gates and logic gates based on the cross-Kerr nonlinearity,” Quantum Inf. Proc. 11(6), 1627–1651 (2012).
[Crossref]

Am. J. Phys. (1)

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys. 77(2), 111–115 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett. 41(8), 679–681 (1982).
[Crossref]

H. S. Uhm, P. Y. Oh, and E. H. Choi, “Properties of excited xenon atoms in an alternating current plasma display panel,” Appl. Phys. Lett. 93(21), 211501 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

A. S. Pine, C. J. Glassbrenner, and J. A. Kafalas, “Pressure-Tuned GaAs Diode-Laser Absorption Spectroscopy of Xenon Hyperfine Structure,” IEEE J. Quantum Electron. 9(8), 800–807 (1973).
[Crossref]

Nat. Photonics (1)

V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7(2), 138–141 (2012).
[Crossref]

Nature (3)

P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396(6711), 537–542 (1998).
[Crossref]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508(7495), 241–244 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7(1), 137 (2005).
[Crossref]

Phys. Rev. A (5)

B. T. Kirby and J. D. Franson, “Nonlocal interferometry using macroscopic coherent states and weak nonlinearities,” Phys. Rev. A 87(5), 053822 (2013).
[Crossref]

H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81(5), 053829 (2010).
[Crossref]

T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88(5), 053804 (2013).
[Crossref]

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73(6), 062305 (2006).
[Crossref]

T. Xia, S. W. Morgan, Y.-Y. Jau, and W. Happer, “Polarization and hyperfine transitions of metastable 129Xe in discharge cells,” Phys. Rev. A 81(3), 033419 (2010).
[Crossref]

Phys. Rev. Lett. (3)

M. Walhout, A. Witte, and S. L. Rolston, “Precision measurement of the metastable 6s[3/2]_2 lifetime in xenon,” Phys. Rev. Lett. 72(18), 2843–2846 (1994).
[Crossref] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75(25), 4710–4713 (1995).
[Crossref] [PubMed]

Quantum Inf. Proc. (1)

H. You and J. D. Franson, “Theoretical comparison of quantum Zeno gates and logic gates based on the cross-Kerr nonlinearity,” Quantum Inf. Proc. 11(6), 1627–1651 (2012).
[Crossref]

Other (2)

R. J. Cedolin, “Laser-induced fluorescence diagnostics of xenon plasmas,” Ph.D. Thesis, Stanford University (1997).

B. T. Kirby, G. T. Hickman, T. B. Pittman, and J. D. Franson, “Feasibility of single-photon cross-phase modulation using metastable xenon in a high finesse cavity,” http://arxiv.org/abs/1403.6340v1 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Xenon energy level diagram showing the energy levels and transitions of interest. An RF discharge populates the long-lived 6s[3∕2]2 metastable state which is then used as an effective ground state. A pair of transitions at 823 nm and 853 nm is then available for nonlinear optics experiments.

Fig. 2
Fig. 2

Hyperfine splittings for the 6s[3∕2]2 to 6p[3∕2]2 transition in the naturally occurring xenon isotopes, as shown in reference [17]. Each of the 7 even isotopes has a nuclear spin of 0, leading to a total of 21 hyperfine components.

Fig. 3
Fig. 3

Conceptual overview of the resonant cavity and xenon source. Xenon was excited into the metastable state via an RF discharge. The fundamental transverse cavity mode could be easily isolated from the higher-order modes, as shown in the inset in an oscilloscope trace of the cavity transmission spectrum (for this trace, the cavity was deliberately misaligned to highlight the higher-order modes).

Fig. 4
Fig. 4

Overview of the fiber-based apparatus used to measure saturated absorption in the 6s[3∕2]2 to 6p[3∕2]2 transition of metastable xenon. Variable attenuators and fiber-coupled switches allowed the system to switch quickly between high-intensity for locking the laser to the cavity resonance and low-intensity for probing the xenon absorption.

Fig. 5
Fig. 5

Absorption data for intra-cavity metastable xenon with input powers of 0.5, 2 and 19 nW. The hyperfine components that dominate the spectrum are labeled by isotope and Fi→Ff [19, 20]. A significant change in the absorption can be seen between power levels of 0.5 and 2 nW.

Metrics