Abstract

For large-scale real time wave optical applications, we propose and demonstrate scalable simple digital spatial light modulator (SLM)-micromesh (μM) heterostructures, which fully harness ubiquitous well developed consumer information displays for real time large-scale SLMs and advanced patterning technologies for promoting the wave optical properties of SLMs of any size. Weakly diffractive projection mode large-scale SLMs with poor demultiplexity are transformed to highly diffractive mode heterostructures with fine patterned micromeshes as efficient demultiplexers or wave optical promoters. As a result, diffraction efficiency, diffraction angle, demultiplexity, multiplexity, reconstructed image quality and numbers of visibly reconstructed images largely increase even though the pixel pitches of the employed SLMs are many orders of magnitude larger than the wavelength of the illuminating light. The approach shown in this study can be applicable even for any sized weakly diffractive SLMs, and can simultaneously increase the effective spatial bandwidth and the physical dimension required for their wave optical applications. This can’t be achieved by presently available SLMs alone.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scalable micromesh-digital spatial light modulators

Hoon Jeong and Jaewu Choi
Opt. Express 23(20) 26696-26709 (2015)

Real-time computation of diffraction fields for pixelated spatial light modulators

G. Bora Esmer
Opt. Express 23(10) 12636-12647 (2015)

Universal phase-only spatial light modulators

Minho Choi and Jaewu Choi
Opt. Express 25(19) 22253-22267 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
    [Crossref]
  2. N. Savage, “Digital spatial light modulators,” Nat. Photon. 3(3), 170–172 (2009).
    [Crossref]
  3. M. Nakamura, K. I. Kitayama, Y. Igasaki, N. Shamoto, and K. Kaneda, “Image fiber optic space-CDMA parallel transmission experiment using 8 x 8 VCSEL/PD arrays,” Appl. Opt. 41(32), 6901–6906 (2002).
    [Crossref] [PubMed]
  4. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
    [Crossref] [PubMed]
  5. V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
  6. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
    [Crossref]
  7. H. Yoshikawa and T. Yamaguchi, “Recent progress on digital holography for 3D display,” Proc. SPIE 8557, 85570C (2012).
    [Crossref]
  8. H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51(7), 075801 (2012).
    [Crossref]
  9. T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 10-μm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light,” Opt. Lett. 27(16), 1406–1408 (2002).
    [Crossref] [PubMed]
  10. S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
    [Crossref]
  11. A. K. Jayasinghe, J. Rohner, and M. S. Hutson, “Holographic UV laser microsurgery,” Biomed. Opt. Express 2(9), 2590–2599 (2011).
    [Crossref] [PubMed]
  12. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
    [Crossref]
  13. V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
    [Crossref] [PubMed]
  14. J. Chou, H. Yan, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
    [Crossref]
  15. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
    [Crossref]
  16. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11(2), 158–166 (2003).
    [Crossref] [PubMed]
  17. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
    [Crossref] [PubMed]
  18. S. Uchikoga, “Future trend of flat panel displays and comparison of it driving methods,” in Proc. IEEE Int. Symp. Power Semicond. Devices and ICs1–5 (2006).
    [Crossref]
  19. D. J. Lim, N. Runde, and T. R. Anderson, “Applying technology forecasting to new product development target setting of LCD panels,” Adv. Business Manage. Forecast. 9, 137–152 (2013).
    [Crossref]
  20. J. Lucas, “Samsung display showcasing state-of-the-art curved display and other advanced technologies at display week” (Business Wire, 2014) (10/June/2014), http://www.businesswire.com/news/home/20140602006705/en/Samsung-Display-Showcasing-State-of-the-Art-Curved-Display-Advanced#.U5aXPvl_uHx .
  21. H. Kelly, “TV trends at CES:4K, curves and smart TVs” (CNN, 2014) (10/June/2014), http://edition.cnn.com/2014/01/07/tech/gaming-gadgets/ces-television-trends/ .
  22. R. M. Soneira, “2014 Innovative displays and display technologies smartphones, tablets, TVs, and wearable displays” (Display Mate, 2014) (10/June/2014), http://www.displaymate.com/Display_Technology_2014.htm .
  23. N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
    [Crossref]
  24. M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
    [Crossref]
  25. S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys. 111(7), 071101 (2012).
    [Crossref]
  26. D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
    [Crossref]
  27. B. Davarcioglu, “An overview of diode pumped solid state (DPSS) lasers,” IAAST 1, 1–12 (2010).
  28. F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
    [Crossref]
  29. S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
    [Crossref]
  30. N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302 (1991).
    [Crossref]
  31. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
    [Crossref]
  32. T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
    [Crossref]
  33. S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37(11), 1955–1957 (2012).
    [Crossref] [PubMed]
  34. S. Benton and V. M. Jr. Bove, Holographic Imaging (Wiley, 2008).
  35. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  36. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in Matlab (SPIE, 2010).
  37. T. Schallenberg, C. Schumacher, S. Gundel, and W. Faschinger, “Shadow mask technology,” Thin Solid Films 412(1-2), 24–29 (2002).
    [Crossref]
  38. P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
    [Crossref]
  39. Y. Noguchi, T. Sekitani, and T. Someya, “Printed shadow masks for organic transistors,” Appl. Phys. Lett. 91(13), 133502 (2007).
    [Crossref]
  40. S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
    [Crossref]
  41. M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
    [Crossref]

2014 (2)

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
[Crossref]

2013 (6)

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
[Crossref]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

D. J. Lim, N. Runde, and T. R. Anderson, “Applying technology forecasting to new product development target setting of LCD panels,” Adv. Business Manage. Forecast. 9, 137–152 (2013).
[Crossref]

2012 (7)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).

H. Yoshikawa and T. Yamaguchi, “Recent progress on digital holography for 3D display,” Proc. SPIE 8557, 85570C (2012).
[Crossref]

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51(7), 075801 (2012).
[Crossref]

M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
[Crossref]

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys. 111(7), 071101 (2012).
[Crossref]

S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37(11), 1955–1957 (2012).
[Crossref] [PubMed]

2011 (4)

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

A. K. Jayasinghe, J. Rohner, and M. S. Hutson, “Holographic UV laser microsurgery,” Biomed. Opt. Express 2(9), 2590–2599 (2011).
[Crossref] [PubMed]

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

2010 (1)

B. Davarcioglu, “An overview of diode pumped solid state (DPSS) lasers,” IAAST 1, 1–12 (2010).

2009 (1)

N. Savage, “Digital spatial light modulators,” Nat. Photon. 3(3), 170–172 (2009).
[Crossref]

2007 (1)

Y. Noguchi, T. Sekitani, and T. Someya, “Printed shadow masks for organic transistors,” Appl. Phys. Lett. 91(13), 133502 (2007).
[Crossref]

2005 (1)

S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
[Crossref]

2003 (2)

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11(2), 158–166 (2003).
[Crossref] [PubMed]

J. Chou, H. Yan, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

2002 (4)

1999 (1)

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

1996 (1)

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

1991 (1)

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302 (1991).
[Crossref]

1990 (1)

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[Crossref]

Ahderom, S.

S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
[Crossref]

Alameh, K. E.

S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
[Crossref]

Anderson, T. R.

D. J. Lim, N. Runde, and T. R. Anderson, “Applying technology forecasting to new product development target setting of LCD panels,” Adv. Business Manage. Forecast. 9, 137–152 (2013).
[Crossref]

Araya, R.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Athale, R. A.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[Crossref]

Bando, Y.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Bishop, K. J. M.

S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
[Crossref]

Boissiere, C.

M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
[Crossref]

Bove, V. M.

V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Bulovic, V.

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Burrows, P. E.

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Butre, T.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Campbell, C. J.

S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
[Crossref]

Chang, M. H.

M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
[Crossref]

Cho, J.

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

Choi, C. J.

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

Chou, J.

J. Chou, H. Yan, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Christmas, J.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Chu, D.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Collings, N.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Corzine, S.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Crossland, B.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Das, D.

M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
[Crossref]

Davarcioglu, B.

B. Davarcioglu, “An overview of diode pumped solid state (DPSS) lasers,” IAAST 1, 1–12 (2010).

Davey, T.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Demars, S.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Dentai, A.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Dholakia, K.

Drisko, G. L.

M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
[Crossref]

Evans, M.

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

Evans, P.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Faschinger, W.

T. Schallenberg, C. Schumacher, S. Gundel, and W. Faschinger, “Shadow mask technology,” Thin Solid Films 412(1-2), 24–29 (2002).
[Crossref]

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Faustini, M.

M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
[Crossref]

Fickler, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Fisher, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Forrest, S. R.

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Fukaya, N.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Fütterer, G.

Godo, H.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Grosso, D.

M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
[Crossref]

Grzybowski, B. A.

S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
[Crossref]

Gu, G.

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Gundel, S.

T. Schallenberg, C. Schumacher, S. Gundel, and W. Faschinger, “Shadow mask technology,” Thin Solid Films 412(1-2), 24–29 (2002).
[Crossref]

Hashimoto, N.

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302 (1991).
[Crossref]

Häussler, R.

Honda, T.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Horiuchi, M.

Hutson, M. S.

Igasaki, Y.

Ito, T.

Jalali, B.

J. Chou, H. Yan, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

James, A.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Jayasinghe, A. K.

Jin, G.

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51(7), 075801 (2012).
[Crossref]

Joyner, C.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Kanbayashi, Y.

Kaneda, K.

Kang, H.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Kato, H.

Kato, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Kish, F.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Kitamura, K.

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302 (1991).
[Crossref]

Kitayama, K. I.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Krenn, M.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Kurita, T.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

Lal, V.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Lambert, D.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Lee, S. H.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[Crossref]

Leister, N.

Leo, K.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
[Crossref]

Li, S.

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys. 111(7), 071101 (2012).
[Crossref]

Lim, D. J.

D. J. Lim, N. Runde, and T. R. Anderson, “Applying technology forecasting to new product development target setting of LCD panels,” Adv. Business Manage. Forecast. 9, 137–152 (2013).
[Crossref]

Lo, K.

S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
[Crossref]

Lüssem, B.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
[Crossref]

Ma, M.

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

Maeno, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Marwah, K.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

Mavaddat, R.

S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
[Crossref]

McGloin, D.

Melville, H.

Meyaard, D. S.

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

Mishinaa, T.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

Missey, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Morokawa, S.

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302 (1991).
[Crossref]

Murthy, S.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Muthiah, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Nagarajan, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Nakamura, M.

Neff, J. A.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[Crossref]

Nikolenko, V.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Nishikawa, O.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Noguchi, Y.

Y. Noguchi, T. Sekitani, and T. Someya, “Printed shadow masks for organic transistors,” Appl. Phys. Lett. 91(13), 133502 (2007).
[Crossref]

Oia, R.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

Onural, L.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Pecht, M.

M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
[Crossref]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Peterka, D. S.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Pleumeekers, J.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Plick, W. N.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Raisi, M.

S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
[Crossref]

Ramelow, S.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Raskar, R.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

Reffle, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Reichelt, S.

Reineke, S.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
[Crossref]

Rohner, J.

Rossi, J.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Runde, N.

D. J. Lim, N. Runde, and T. R. Anderson, “Applying technology forecasting to new product development target setting of LCD panels,” Adv. Business Manage. Forecast. 9, 137–152 (2013).
[Crossref]

Salvatore, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Sato, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Savage, N.

N. Savage, “Digital spatial light modulators,” Nat. Photon. 3(3), 170–172 (2009).
[Crossref]

Schaeff, C.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Schallenberg, T.

T. Schallenberg, C. Schumacher, S. Gundel, and W. Faschinger, “Shadow mask technology,” Thin Solid Films 412(1-2), 24–29 (2002).
[Crossref]

Schneider, R.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Schubert, E. F.

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

Schumacher, C.

T. Schallenberg, C. Schumacher, S. Gundel, and W. Faschinger, “Shadow mask technology,” Thin Solid Films 412(1-2), 24–29 (2002).
[Crossref]

Sekitani, T.

Y. Noguchi, T. Sekitani, and T. Someya, “Printed shadow masks for organic transistors,” Appl. Phys. Lett. 91(13), 133502 (2007).
[Crossref]

Senoh, T.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

Shamoto, N.

Shimobaba, T.

Sibbett, W.

Smoukov, S. K.

S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
[Crossref]

Someya, T.

Y. Noguchi, T. Sekitani, and T. Someya, “Printed shadow masks for organic transistors,” Appl. Phys. Lett. 91(13), 133502 (2007).
[Crossref]

Spalding, G. C.

Tan, Q.

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51(7), 075801 (2012).
[Crossref]

Thomschke, M.

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
[Crossref]

Tian, P. F.

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Uchikoga, S.

S. Uchikoga, “Future trend of flat panel displays and comparison of it driving methods,” in Proc. IEEE Int. Symp. Power Semicond. Devices and ICs1–5 (2006).
[Crossref]

Usukura, N.

Varde, P. V.

M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
[Crossref]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Waag, A.

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys. 111(7), 071101 (2012).
[Crossref]

Welch, D.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

Wetzstein, G.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

Woodruff, A.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Yamaguchi, T.

H. Yoshikawa and T. Yamaguchi, “Recent progress on digital holography for 3D display,” Proc. SPIE 8557, 85570C (2012).
[Crossref]

Yamamotoa, K.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

Yan, H.

J. Chou, H. Yan, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Yaras, F.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Yoshikawa, H.

H. Yoshikawa and T. Yamaguchi, “Recent progress on digital holography for 3D display,” Proc. SPIE 8557, 85570C (2012).
[Crossref]

Yuste, R.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Zeilinger, A.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51(7), 075801 (2012).
[Crossref]

Zhou, T. X.

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Ziari, M.

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

ACM Trans. Graph. (1)

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using over complete dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 1–11 (2013).
[Crossref]

Adv. Business Manage. Forecast. (1)

D. J. Lim, N. Runde, and T. R. Anderson, “Applying technology forecasting to new product development target setting of LCD panels,” Adv. Business Manage. Forecast. 9, 137–152 (2013).
[Crossref]

Adv. Mater. (1)

S. K. Smoukov, K. J. M. Bishop, C. J. Campbell, and B. A. Grzybowski, “Freestanding three-dimensional copper foils prepared by electrodless deposition on micropatterned gels,” Adv. Mater. 17(6), 751–755 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Noguchi, T. Sekitani, and T. Someya, “Printed shadow masks for organic transistors,” Appl. Phys. Lett. 91(13), 133502 (2007).
[Crossref]

Biomed. Opt. Express (1)

Cold Spring Harb. Protoc. (1)

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

ECS Solid State Lett. (1)

D. S. Meyaard, M. Ma, E. F. Schubert, C. J. Choi, J. Cho, and M. Evans, “Mesa-free III-V nitride light-emitting diodes with flat surface,” ECS Solid State Lett. 3(4), Q17–Q19 (2014).
[Crossref]

IAAST (1)

B. Davarcioglu, “An overview of diode pumped solid state (DPSS) lasers,” IAAST 1, 1–12 (2010).

IEEE Photon. Technol. Lett. (1)

J. Chou, H. Yan, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

J. Appl. Phys. (1)

S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys. 111(7), 071101 (2012).
[Crossref]

J. Disp. Technol. (2)

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oia, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” J. Disp. Technol. 7, 382–390 (2011).
[Crossref]

J. Vac. Sci. Technol. A (1)

P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” J. Vac. Sci. Technol. A 17(5), 2975–2981 (1999).
[Crossref]

Microelectron. Reliab. (1)

M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectron. Reliab. 52(5), 762–782 (2012).
[Crossref]

Nat. Photon. (1)

N. Savage, “Digital spatial light modulators,” Nat. Photon. 3(3), 170–172 (2009).
[Crossref]

Nature (1)

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Opt. Eng. (1)

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51(7), 075801 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. IEEE (4)

F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butre, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From viisible light-emitting diodes to large-scale III-V photonic integrated circuits,” Proc. IEEE 101(10), 2255–2270 (2013).
[Crossref]

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[Crossref]

V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Proc. SPIE (3)

H. Yoshikawa and T. Yamaguchi, “Recent progress on digital holography for 3D display,” Proc. SPIE 8557, 85570C (2012).
[Crossref]

N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE 1461, 291–302 (1991).
[Crossref]

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Rev. Mod. Phys. (1)

S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85(3), 1245 (2013).
[Crossref]

Science (1)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Scr. Mater. (1)

M. Faustini, G. L. Drisko, C. Boissiere, and D. Grosso, “Liquid deposition approaches to self-assembled periodic nanomasks,” Scr. Mater. 74, 13–18 (2014).
[Crossref]

Thin Solid Films (1)

T. Schallenberg, C. Schumacher, S. Gundel, and W. Faschinger, “Shadow mask technology,” Thin Solid Films 412(1-2), 24–29 (2002).
[Crossref]

Other (8)

S. Benton and V. M. Jr. Bove, Holographic Imaging (Wiley, 2008).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in Matlab (SPIE, 2010).

S. Uchikoga, “Future trend of flat panel displays and comparison of it driving methods,” in Proc. IEEE Int. Symp. Power Semicond. Devices and ICs1–5 (2006).
[Crossref]

J. Lucas, “Samsung display showcasing state-of-the-art curved display and other advanced technologies at display week” (Business Wire, 2014) (10/June/2014), http://www.businesswire.com/news/home/20140602006705/en/Samsung-Display-Showcasing-State-of-the-Art-Curved-Display-Advanced#.U5aXPvl_uHx .

H. Kelly, “TV trends at CES:4K, curves and smart TVs” (CNN, 2014) (10/June/2014), http://edition.cnn.com/2014/01/07/tech/gaming-gadgets/ces-television-trends/ .

R. M. Soneira, “2014 Innovative displays and display technologies smartphones, tablets, TVs, and wearable displays” (Display Mate, 2014) (10/June/2014), http://www.displaymate.com/Display_Technology_2014.htm .

S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications,” in Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Commun. 239–242 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) A medium-scale SLM (19 inch diagonal, 300 μm x 300 μm pixel pitch) demounted from a PC monitor, (b) a small-scale SLM (3.5 inch diagonal, 77.4 μm x 77.4 μm pixel pitch) from an iPod and (c) a mini-scale SLM (1.3 inch diagonal, 32 μm x 32 μm pixel pitch) from a projection display with a micromesh (μM). The inset of each figure shows the microscopic view of pixels. (d) A schematic shows the light propagation through SLMs with weak diffraction due to the coarse pitches and opening widths (weakly diffractive projection mode). (e) A schematic showing the mode transfer from the projection mode to the diffraction mode by inserting a micromesh structure between the SLMs and the screen. PSLM (PμM) and WSLM (WμM) are the pixel pitch and the opening width of the SLM (μM), respectively.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup for (a) recording and (d) reconstruction of the hologram (c) of the object (b). f1 and f2 are the focal lengths of the employed convex and concave lenses. ( ξ , η ) , ( x , y ) and ( X , Y ) are the coordinate systems for the SLM, the micromesh and the observation plane, respectively.
Fig. 3
Fig. 3 (a), (b) and (c) Diffraction profiles of the μSLM [Fig. 1(c0], the sSLM [Fig. 1(b)], and the mSLM [Fig. 1(a)]. (d), (e) and (f) Diffraction profiles of the μSLM, the sSLM and the mSLM with the hologram [Fig. 2(c)] addressed. g), h) and i) Captured real images corresponding to each principal maximum from the 0th (0th, 0th) order to the 9th (21st, 11th) diffraction order of the μSLM (sSLM, mSLM). Note: The data shown in Fig. 3 are repeatedly reproduced in the following figures for efficient data explanation by comparison.
Fig. 4
Fig. 4 (a) A photographic image of a micromesh mask used in the experiment. The 1 inch x 1 inch chrome metal micromesh pattern with variation in the pitch is formed on the 5 inch x 5 inch soda lime glass using photolithography process. (b) A freestanding nickel metal micromesh sheet (μM16). Microscopic images of (c) μM4, (d) μM6, (e) μM8-1 and (f) μM8-2. Diffractions profiles of (g) μM4, (h) μM6, (i) μM8-1, (j) μM8-2 and k) μSLM The angular scale shown on the top of the figure is the diffraction angle where the 0th order principal maximum is located at the origin (0 degree) of the scale.
Fig. 5
Fig. 5 The experimental diffraction profiles (a) for the μSLM alone and the μSLM-μM8-2, μSLM-μM8-1, μSLM-μM6, and μSLM-μM4 heterostructures, and (b) for the μSLM with the coin hologram image addressed (μSLM-I), the μSLM-μM heterostructures with the hologram image addressed (μSLM-I-μM8-2, μSLM-I-μM8-1, μSLM-I-μM6 and μSLM-I-μM4). Reconstructed real images corresponding to each principal maximum along the horizontal axis within 10° diffraction angle by (c) the μSLM alone, (d) the μSLM-μM8-2, (e) μSLM-μM8-2, (f) μSLM-μM4 and (g) μSLM-μM6 heterostructures. The center of the reconstructed images is located at ~0.2° higher diffraction angle from the corresponding principal maxima. Notice that the angular scale for the μSLM-μM6 is different from that of others.
Fig. 6
Fig. 6 (a) Experimental and (c) simulated physical gap distance (z = 0 (simulation only), 1, 10, 30 and 58.2 mm) dependent diffraction profiles of the μSLM-μM6 heterostructures without (top left column)/with (top right column) the hologram addressed on the μSLM. The detailed reconstructed images by (b) experiment and (d) simulation.
Fig. 7
Fig. 7 (a) Schematic showing the overlapping of the principal maxima by the SLM and the μM of a SLM-μM heterostructure at the optimized distance z. θ is the angle between the 0th order and the ( n o p j )th order principal maxima of the SLM, and ф is the angle between the 0th order and jth order principal maxima of the μM. The distance between the SLM and the screen, R i m g = z + Z , remains intact, and X is the distance from the 0th order to the ( n o p j )th order principal maxima at the screen where the ( n o p j )th diffraction order beam of the SLM and the jth diffraction order beam of the micromesh meet the screen. (b) The graphical method to find the optimum gap distances, at which the plots for the left hand side (red, orange, light green, green, blue, indigo, and violet solid lines) and the right hand side (red, orange, light green, green, blue, indigo, and violet dotted lines) of Eq. (3) are intersected. The parentheses (( n o p j ), j) above the plotted lines denote (the principal maximum diffraction order of the μSLM, the principal maximum diffraction order of the μM6). The dotted line is the connection of the cross point. The intersections occur at z = 58.2 mm for j = 1, z = 59.5 mm for j = 2 and z = 61. 8 mm for j = 3.
Fig. 8
Fig. 8 Diffraction profiles of the small-scale SLM alone (sSLM) and the sSLM-μM heterostructures, sSLM-μM8-2, sSLM-μM8-1, sSLM-μM6, sSLM-μM4 and sSLM-μM16 (a) without and (b) with the hologram image addressed on the SLM (sSLM-I-μM8-2, sSLM-I-μM8-1, sSLM-I-μM6, sSLM-I-μM4 and sSLM-I-μM16). The scale shown on the top of the figure is the diffraction angle. The distance between the sSLM and the micromeshes is optimized to z = 6.48 cm for μM8-2 and μM8-1, z = 6.5 cm for μM6, z = 1.7 cm for μM4 and z = 13 cm for μM16. Reconstructed real images corresponding to their principal maxima by (c) the sSLM (d) sSLM-μM8-2, (e) sSLM-μM8-1, (f) sSLM-μM6, (g) sSLM-μM4 and (h) sSLM-μM16. The right 22 boxes (90° clockwise rotated) denote the layer-out of the reconstructed images corresponding to the diffraction order principal maxima.
Fig. 9
Fig. 9 Diffraction profiles of the medium-scale SLM alone (mSLM) and the mSLM-μM heterostructures, mSLM-μM8-2, mSLM-μM8-1, mSLM-μM6, mSLM-μM4 and mSLM-μM16 (a) without and (b) with the hologram image addressed on the mSLM (mSLM-I-μM8-2, mSLM-I-μM8-1, mSLM-I-μM6, mSLM-I-μM4 and mSLM-I-μM16). The distance between the mSLM and the micromeshes is optimized to z = 1.0 cm for μM8-2 and μM8-1, z = 0 cm for μM6, z = 0 cm for μM4 and z = 3.0 cm for μM16. The scale shown on the top of the figure is the diffraction angle where the 0th order principal maximum is located at the origin (0 degree) of the scale. (c) The aperture diameter dependent reconstructed images by using the μSLM and a controllable circular aperture located at the front of the μSLM for d = 22 (c1), 20 (c2), 18 (c3), 16 (c4), 14 (c5), 12 (c6), 10 (c7), 8 (c8), 6 (c9), 4 (c10), 2 (c11) and 1 mm (c12). (d) The μSLM pixel number utilization rate percentage as a function of the aperture diameter when the hologram image is addressed on the μSLM using 480 x 480 pixels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U m e s h ( x , y ) = exp [ i k ( 1 m ) ( x 2 + y 2 ) / ( 2 z m ) ] F 1 ( exp [ i π λ z ( f ξ 2 + f η 2 ) / m ] × F { exp [ i k ( 1 m ) ( ξ 2 + η 2 ) / ( 2 z ) ] exp [ i k ( ξ 2 + η 2 ) / ( 2 R r e c o n ) ] × U i ( ξ , η ) T S L M ( ξ , η ) / m } )
U s c r e e n ( X , Y ) = exp [ i k ( 1 l ) ( X 2 + Y 2 ) / ( 2 Z l ) ] F 1 { exp [ i π λ Z ( f x 2 + f y 2 ) / l ] × F [ exp [ i k ( 1 l ) ( x 2 + y 2 ) / ( 2 Z ) ] exp [ i k ( 1 m ) ( x 2 + y 2 ) / ( 2 z m ) ] × T μ M ( x , y ) F 1 ( exp [ i π λ z ( f ξ 2 + f η 2 ) / m ] F { exp [ i k ( 1 m ) ( ξ 2 + η 2 ) / ( 2 z ) ] × exp [ i k ( ξ 2 + η 2 ) / ( 2 R r e c o n ) ] U i ( ξ , η ) T S L M ( ξ , η ) / m } ) / l ] }
R i m g tan ( sin 1 ( ( n o p j ) P S L M λ ) ) = ( R i m g z ) tan ( sin 1 ( j P μ M λ ) )

Metrics