Abstract

We theoretically and experimentally study the propagation characteristics of the circular Airy beam (CAB) when its first few light rings are blocked. It is shown that the focus position of the blocked CAB will remain the same, and its abruptly autofocusing property will be enhanced. Since the maximum focal intensity almost remains the same when the first ring is blocked, a better result of abruptly autofocusing property can be obtained when only the first ring is eliminated. Compared with the common CAB with a same hollow region, the intensity of the blocked CAB will focus at a different position and the intensity will be increased much larger than the common CAB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
    [Crossref] [PubMed]
  2. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
    [Crossref] [PubMed]
  3. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
    [Crossref] [PubMed]
  4. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
    [Crossref]
  5. N. K. Efremidis, V. Paltoglou, and W. von Klitzing, “Accelerating and abruptly autofocusing matter waves,” Phys. Rev. A 87(4), 043637 (2013).
    [Crossref]
  6. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
    [Crossref] [PubMed]
  7. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
    [Crossref] [PubMed]
  8. Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Opt. Express 21(20), 24413–24421 (2013).
    [Crossref] [PubMed]
  9. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref] [PubMed]
  10. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
    [Crossref] [PubMed]
  11. J. A. Davis, D. M. Cottrell, and D. Sand, “Abruptly autofocusing vortex beams,” Opt. Express 20(12), 13302–13310 (2012).
    [Crossref] [PubMed]
  12. P. Li, S. Liu, T. Peng, G. Xie, X. Gan, and J. Zhao, “Spiral autofocusing Airy beams carrying power-exponent-phase vortices,” Opt. Express 22(7), 7598–7606 (2014).
    [Crossref] [PubMed]
  13. Y. Jiang, K. Huang, and X. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express 20(17), 18579–18584 (2012).
    [Crossref] [PubMed]
  14. S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
    [Crossref] [PubMed]
  15. W. T. Welford, “Use of Annular Apertures to Increase Focal Depth,” J. Opt. Soc. Am. 50(8), 749–752 (1960).
    [Crossref]
  16. H. F. A. Tschunko, “Imaging Performance of Annular Apertures,” Appl. Opt. 13(8), 1820–1823 (1974).
    [Crossref] [PubMed]
  17. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
    [Crossref] [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  19. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21(1), 53–58 (2004).
    [Crossref] [PubMed]
  20. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]

2014 (1)

2013 (4)

S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
[Crossref] [PubMed]

N. K. Efremidis, V. Paltoglou, and W. von Klitzing, “Accelerating and abruptly autofocusing matter waves,” Phys. Rev. A 87(4), 043637 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
[Crossref] [PubMed]

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Opt. Express 21(20), 24413–24421 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

2010 (1)

2008 (2)

2004 (1)

1999 (1)

1974 (1)

1960 (1)

Broky, J.

Campos, J.

Chen, Z.

Chremmos, I.

Chremmos, I. D.

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

Christodoulides, D. N.

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[Crossref] [PubMed]

I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
[Crossref] [PubMed]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

Cottrell, D. M.

Couairon, A.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
[Crossref] [PubMed]

Davis, J. A.

Dogariu, A.

Efremidis, N. K.

Gan, X.

Guizar-Sicairos, M.

Gutiérrez-Vega, J. C.

Huang, K.

Jiang, Y.

Li, P.

Liu, S.

Lu, X.

Mills, M. S.

Moreno, I.

Paltoglou, V.

N. K. Efremidis, V. Paltoglou, and W. von Klitzing, “Accelerating and abruptly autofocusing matter waves,” Phys. Rev. A 87(4), 043637 (2013).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
[Crossref] [PubMed]

Papazoglou, D. G.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

Peng, T.

Prakash, J.

Sand, D.

Siviloglou, G. A.

Tschunko, H. F. A.

Tzortzakis, S.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

von Klitzing, W.

N. K. Efremidis, V. Paltoglou, and W. von Klitzing, “Accelerating and abruptly autofocusing matter waves,” Phys. Rev. A 87(4), 043637 (2013).
[Crossref]

Wang, M.

Welford, W. T.

Xie, G.

Yzuel, M. J.

Zhang, P.

Zhang, Z.

Zhao, J.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat Commun. 4, 2622 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (7)

Phys. Rev. A (2)

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

N. K. Efremidis, V. Paltoglou, and W. von Klitzing, “Accelerating and abruptly autofocusing matter waves,” Phys. Rev. A 87(4), 043637 (2013).
[Crossref]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The intensity distribution at the initial plane. The first three rings are marked in this figure. The corresponding parameters are r0 = 1mm, a = 0.1, x0 = 0.08mm.

Fig. 2
Fig. 2

(a) Propagation dynamics of common CAB; Propagation dynamics of the blocked CAB: (b) the first ring is blocked; (c) the first two rings are blocked. The corresponding parameters are the same as Fig. 1.

Fig. 3
Fig. 3

Abruptly autofocusing property of the blocked CAB: (a) a = 0.1; (b) a = 0.08. “0” stands for the common beam; “1” stands for the first ring blocked CAB; “2” stands for the first two rings blocked CAB, so does “3”. Other parameters are the same as Fig. 1.

Fig. 4
Fig. 4

The distributions of transverse focal intensity and axial intensity along the beam axis, when a = 0.1. Other parameters are the same as Fig. 1.

Fig. 5
Fig. 5

Experimental setup. Laser, diode laser at 1064nm; HWP, Half wavelength plate; SLM, Spatial Light Modulator.

Fig. 6
Fig. 6

Intensity profile of CAB at the initial plane in experiment:(a) common CAB; (b) first ring blocked CAB; (c) first two rings blocked CAB. The corresponding parameters are the same as Fig. 1.

Fig. 7
Fig. 7

Intensity contrast as a function of the propagation distance measured in experiment: red solid circles is experiment values, black solid line is the theory results. (a) Common CAB; (b)first ring blocked CAB; (3) first two rings blocked CAB. The corresponding parameters are the same as Fig. 1.

Fig. 8
Fig. 8

Comparison of the blocked CAB and common CAB with the same radius. (a) Intensity profile of common CAB, r0 = 1.18mm; (b) distribution of intensity contrast of the two beams. Other parameters are the same as Fig. 1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u ( r ) = C A i ( r 0 r x 0 ) exp ( a r 0 r x 0 ) ,
z f = 4 π x 0 λ R 0 x 0 ,
P ( r ) = { 1 , ( r d < r < r u ) 0 , ( r r d o r r u r )
u ( r , z ) = 2 π 0 g ˜ ( k ) J 0 ( 2 π k r ) e 2 i π z λ 2 k 2 k d k ,
g ˜ ( k ) = 2 π 0 P ( r ) u ( r , 0 ) J 0 ( 2 π k r ) r d r ,

Metrics