Abstract

Nonclassical states of light are an important resource in today’s quantum communication and metrology protocols. Quantum up-conversion of nonclassical states is a promising approach to overcome frequency differences between disparate subsystems within a quantum information network. Here, we present the generation of heralded narrowband single photons at 1550 nm via cavity enhanced spontaneous parametric down-conversion (SPDC) and their subsequent up-conversion to 532 nm. Quantum non-Gaussianity (QNG), which is an important feature for applications in quantum information science, was experimentally certified for the first time in frequency up-converted states.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strongly squeezed states at 532 nm based on frequency up-conversion

Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina E. Vollmer, Jaromír Fiurášek, and Roman Schnabel
Opt. Express 23(12) 16035-16041 (2015)

Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

Coherence and entanglement preservation of frequency-converted heralded single photons

Andreas Lenhard, José Brito, Matthias Bock, Christoph Becher, and Jürgen Eschner
Opt. Express 25(10) 11187-11199 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
    [Crossref] [PubMed]
  2. G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
    [Crossref]
  3. J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002).
    [Crossref]
  4. J. Niset, J. Fiurášek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
    [Crossref] [PubMed]
  5. M. Ohliger, K. Kieling, and J. Eisert, “Limitations of quantum computing with Gaussian cluster states,” Phys. Rev. A 82, 042336 (2010).
    [Crossref]
  6. R Filip and L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106, 200401 (2011).
    [Crossref] [PubMed]
  7. M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
    [Crossref]
  8. A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
    [Crossref]
  9. M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
    [Crossref]
  10. I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .
  11. M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
    [Crossref]
  12. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
    [Crossref] [PubMed]
  13. A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
    [Crossref] [PubMed]
  14. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
    [Crossref] [PubMed]
  15. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  16. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
    [Crossref]
  17. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
    [Crossref] [PubMed]
  18. C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
    [Crossref] [PubMed]
  19. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
    [Crossref] [PubMed]
  20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  21. H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
    [Crossref]
  22. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
    [Crossref]
  23. P. D. Drummond and M. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990).
    [Crossref] [PubMed]
  24. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [Crossref] [PubMed]
  25. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
    [Crossref] [PubMed]
  26. A. Samblowski, C. E. Vollmer, C. Baune, J. Fiurášek, and R. Schnabel, “Weak signal conversion from 1550 to 532 nm,” Opt. Lett. 39, 2979–2981 (2014).
    [Crossref] [PubMed]
  27. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
    [Crossref] [PubMed]
  28. B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
    [Crossref] [PubMed]

2014 (3)

2013 (1)

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

2012 (1)

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

2011 (2)

R Filip and L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106, 200401 (2011).
[Crossref] [PubMed]

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

2010 (3)

M. Ohliger, K. Kieling, and J. Eisert, “Limitations of quantum computing with Gaussian cluster states,” Phys. Rev. A 82, 042336 (2010).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

2009 (3)

J. Niset, J. Fiurášek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
[Crossref]

2007 (1)

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

2006 (1)

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

2002 (3)

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002).
[Crossref]

2001 (2)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

1992 (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref] [PubMed]

1990 (2)

P. D. Drummond and M. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990).
[Crossref] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[Crossref] [PubMed]

1987 (1)

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Aichele, T.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Albota, M. A.

Andersen, U. L.

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

Baune, C.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

A. Samblowski, C. E. Vollmer, C. Baune, J. Fiurášek, and R. Schnabel, “Weak signal conversion from 1550 to 532 nm,” Opt. Lett. 39, 2979–2981 (2014).
[Crossref] [PubMed]

Benson, O.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Boca, A.

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Boozer, A.

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Britzger, M.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Brückner, F.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Burmeister, O.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Butschek, L.

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Cerf, N. J.

J. Niset, J. Fiurášek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

Cirac, J. I.

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Clausnitzer, T.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Danzmann, K.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

Diamanti, E.

Dong, H.

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
[Crossref]

Dong, R.

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

Drummond, P. D.

P. D. Drummond and M. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990).
[Crossref] [PubMed]

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Duan, L.-M.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Dušek, M.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

Eberle, T.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Eisert, J.

M. Ohliger, K. Kieling, and J. Eisert, “Limitations of quantum computing with Gaussian cluster states,” Phys. Rev. A 82, 042336 (2010).
[Crossref]

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

Fejer, M. M.

Filip, R

R Filip and L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106, 200401 (2011).
[Crossref] [PubMed]

Filip, R.

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
[Crossref]

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Fiurášek, J.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

A. Samblowski, C. E. Vollmer, C. Baune, J. Fiurášek, and R. Schnabel, “Weak signal conversion from 1550 to 532 nm,” Opt. Lett. 39, 2979–2981 (2014).
[Crossref] [PubMed]

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

J. Niset, J. Fiurášek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002).
[Crossref]

Friedrich, D.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Genoni, M. G.

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Giedke, G.

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
[Crossref]

Händchen, V.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Hansen, H.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Hayes, D.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref] [PubMed]

Huber, T.

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Jayakumar, H.

Ježek, M.

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
[Crossref]

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Kauten, T.

Kieling, K.

M. Ohliger, K. Kieling, and J. Eisert, “Limitations of quantum computing with Gaussian cluster states,” Phys. Rev. A 82, 042336 (2010).
[Crossref]

Kim, M. S.

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Kimble, H.

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Kley, E.-B.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Kumar, P.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[Crossref] [PubMed]

Lachman, L.

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Langrock, C.

Lu, W.

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
[Crossref]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Lvovsky, A. I.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

Matsukevich, D. N.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Maunz, P.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Micuda, M.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Miková, M.

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Miller, R.

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Mišta, L.

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

R Filip and L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106, 200401 (2011).
[Crossref] [PubMed]

Mlynek, J.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Monroe, C.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Niset, J.

J. Niset, J. Fiurášek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

Northup, T.

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Ohliger, M.

M. Ohliger, K. Kieling, and J. Eisert, “Limitations of quantum computing with Gaussian cluster states,” Phys. Rev. A 82, 042336 (2010).
[Crossref]

Olivares, S.

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Olmschenk, S.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Palma, M. L.

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Pan, H.

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
[Crossref]

Paris, M. G. A.

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Plenio, M. B.

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

Potasek, M.

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Predojevic, A.

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

Reid, M.

P. D. Drummond and M. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990).
[Crossref] [PubMed]

Roussev, R. V.

Samblowski, A.

A. Samblowski, C. E. Vollmer, C. Baune, J. Fiurášek, and R. Schnabel, “Weak signal conversion from 1550 to 532 nm,” Opt. Lett. 39, 2979–2981 (2014).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Scheel, S.

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

Schiller, S.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Schnabel, R.

A. Samblowski, C. E. Vollmer, C. Baune, J. Fiurášek, and R. Schnabel, “Weak signal conversion from 1550 to 532 nm,” Opt. Lett. 39, 2979–2981 (2014).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

Solomon, G. S.

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

Straka, I.

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Takesue, H.

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

Tipsmark, A.

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

Tufarelli, T.

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Tünnermann, A.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

Vollmer, C. E.

A. Samblowski, C. E. Vollmer, C. Baune, J. Fiurášek, and R. Schnabel, “Weak signal conversion from 1550 to 532 nm,” Opt. Lett. 39, 2979–2981 (2014).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

Weihs, G.

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22, 4789–4798 (2014).
[Crossref]

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Wong, F. N. C.

Yamamoto, Y.

Yurke, B.

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

Zeng, H.

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89, 191108 (2006).
[Crossref]

Nature (2)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref] [PubMed]

Nature Photon. (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photon. 4, 786–791 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (6)

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

P. D. Drummond and M. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990).
[Crossref] [PubMed]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

M. Ohliger, K. Kieling, and J. Eisert, “Limitations of quantum computing with Gaussian cluster states,” Phys. Rev. A 82, 042336 (2010).
[Crossref]

M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, R. Filip, and U. L. Andersen, “Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state,” Phys. Rev. A 86, 043813 (2012).
[Crossref]

M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function,” Phys. Rev. A 87, 062104 (2013).
[Crossref]

Phys. Rev. Lett. (10)

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

R Filip and L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106, 200401 (2011).
[Crossref] [PubMed]

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107, 213602 (2011).
[Crossref]

J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002).
[Crossref]

J. Niset, J. Fiurášek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112, 073602 (2014).
[Crossref] [PubMed]

A. Boozer, A. Boca, R. Miller, T. Northup, and H. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Science (1)

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Other (1)

I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, “Robust quantum non-Gaussianity of single-photon states,” http://arxiv.org/abs/1403.4194 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Calculated time shift between detection events of trigger (â+) and signal (â) photons in our setup and the effect of extra-filtering of the signal mode. The narrower the linewidth κ of the extra filter in the signal path, the more the correlations between trigger and signal events are smoothed out. Parameters are γ = π · 31 MHz, ε = 0.10γ.
Fig. 2
Fig. 2 Schematic of the experimental setup. Two doubly resonant optical parametric oscillators are pumped above (OPO) and below (SPDC) threshold with a continuous wave 532 nm pump field, producing bright fields and twin photons at 810 nm and 1550 nm. The 1550 nm photons are up-converted to 532 nm in the quantum up-converter (QUC) which is pumped with a strong pump field at 810 nm and analysed in a Hanbury Brown and Twiss setup with Si-APDs (APD-A and -B). The 810 nm photons heralding the existence of a 532 nm photon are detected at APD-T after transmitting the filter cavity (FC).
Fig. 3
Fig. 3 Histogram of the two-fold coincidence detections at APD-T and APD-A (red), and APD-T and APD-B (yellow) with theoretical curves (γ = π · 31MHz, κ = 1.4γ, ε = 0.10γ). The delay for the three-fold coincidences of APD-T, APD-A and APD-B (grey points, right y-axis) is defined as the time between counts at APD-A and -B given that the trigger APD-T detected a photon (within a 100 ns time window).
Fig. 4
Fig. 4 Histogram of the two- and threefold coincidences, as in Fig. 3 with the only difference being that ε = 0.28γ. The three-fold coincidences significantly contribute to the statistics.
Fig. 5
Fig. 5 g(2)(0) values in dependence of the coincidence window Δt and gain parameter ε. For all ε, the states show (nonclassical) subpoissonian statistics. For increasing coincidence windows more background noise is recorded and the multiphoton probability (1− p0p1) increases.
Fig. 6
Fig. 6 Quantum non-Gaussianity of the up-converted states. The witness of QNG, in numbers of standard deviations, is plotted against the size of the coincidence window and three different gain parameters ε. If the witness is positive, then ρ��. QNG could be verified with more than 16 standard deviations when ε = 0.10γ and Δt =34 ns.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d a ^ ± ( t ) d t = i [ a ^ ± ( t ) , H sys ] γ a ^ ± ( t ) + 2 γ a ^ ± , in ( t ) ,
H sys = ω + a ^ + a ^ + + ω a ^ a ^ + i ( ε e i ω p t a ^ + a ^ ε * e i ω p t a ^ + a ^ ) .
Γ ( τ ) = a ^ + , out ( t ) a ^ , out ( t + τ ) a ^ , out ( t + τ ) a ^ + , out ( t ) = [ ε γ 2 ( 1 λ exp ( λ | τ | ) + 1 μ exp ( μ | τ | ) ) ] 2 ,
a ^ ( t ) a ^ ( t ) = t d y κ exp ( ( κ ( t y ) ) a ^ ( y ) ,
Γ ( τ ) = [ γ ε κ 2 ( exp ( μ | τ | ) μ ( κ s ( τ ) μ ) + exp ( λ | τ | ) λ ( κ s ( τ ) λ ) ( 1 + s ( τ ) ) exp ( κ | τ | ) 2 κ 2 λ 2 μ 2 ( κ 2 λ 2 ) ( κ 2 μ 2 ) ) ] 2 ,
H QUC = i ζ ( a ^ u a ^ f + a ^ u a ^ f ) ,
a ^ u ( t ) = a ^ u ( 0 ) cos ( ζ t ) + a ^ f ( 0 ) sin ( ζ t ) .
p 0 = 1 R 1 A + R 1 B + R 2 R 0
p 1 > R 1 A + R 1 B R 0 T 2 + ( 1 T 2 ) 2 T ( 1 T ) R 2 R 0 ,

Metrics