Abstract

Several optical surface sensing techniques, such as Surface Plasmon Resonance (SPR), work by imaging the base of a prism by one of its faces. However, such a fundamental optical concern has not been fully analyzed and understood so far, and spatial resolution remains a critical and controversial issue. In SPR, the propagation length Lx of the surface plasmon waves has been considered as the limiting factor. Here, we demonstrate that for unoptimized systems geometrical aberrations caused by the prism can be more limiting than the propagation length. By combining line-scan imaging mode with optimized prisms, we access the ultimate lateral resolution which is diffraction-limited by the object light diffusion. We describe several optimized configurations in water and discuss the trade-off between Lx and sensitivity. The improvement of resolution is confirmed by imaging micro-structured PDMS stamps and individual living eukaryote cells and bacteria on field-of-view from 0.1 to 20 mm2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design

Frederic A. Banville, Julien Moreau, Mitradeep Sarkar, Mondher Besbes, Michael Canva, and Paul G. Charette
Opt. Express 26(8) 10616-10630 (2018)

Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance

Jiwei Zhang, Siqing Dai, Chaojie Ma, Jianglei Di, and Jianlin Zhao
Appl. Opt. 56(11) 3223-3228 (2017)

Metal clad waveguide (MCWG) based imaging using a high numerical aperture microscope objective

Thomas Söllradl, Frederic A. Banville, Vincent Chabot, Michael Canva, Michel Grandbois, and Paul G. Charette
Opt. Express 25(3) 1666-1679 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18(1), 269 (1902).
    [Crossref]
  2. A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Stat. Solidi 26, 99–101 (1968).
    [Crossref]
  3. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).
  4. J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [Crossref]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  6. P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular analysis and detection using surface plasmon resonance techniques,” Anal. Chem. 86(6), 2799–2812 (2014).
    [Crossref] [PubMed]
  7. S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
    [Crossref]
  8. S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
    [Crossref] [PubMed]
  9. Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
    [Crossref] [PubMed]
  10. J. Homola and M. Piliarik, “SPR sensor instrumentation,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [Crossref]
  11. D. Evanko, “Label-free microscopy,” Nat. Methods 7(1), 36 (2010).
    [Crossref]
  12. W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
    [Crossref] [PubMed]
  13. S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
    [Crossref]
  14. M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
    [Crossref] [PubMed]
  15. P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
    [Crossref] [PubMed]
  16. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [Crossref] [PubMed]
  17. L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett. 32(5), 509–511 (2007).
    [Crossref] [PubMed]
  18. E. Boyer-Provera, A. Rossi, L. Oriol, C. Dumontet, A. Plesa, L. Berguiga, J. Elezgaray, A. Arneodo, and F. Argoul, “Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths,” Opt. Express 21(6), 7456–7477 (2013).
    [Crossref] [PubMed]
  19. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32(13), 2426–2430 (1993).
    [Crossref] [PubMed]
  20. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
    [Crossref]
  21. K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
    [Crossref] [PubMed]
  22. A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
    [Crossref]
  23. E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
    [Crossref] [PubMed]
  24. R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
    [Crossref] [PubMed]
  25. D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
    [Crossref] [PubMed]
  26. J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
    [Crossref] [PubMed]
  27. W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
    [Crossref]
  28. W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am. 58(3), 380–388 (1968).
    [Crossref]
  29. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17(3), 1671–1678 (2009).
    [Crossref] [PubMed]
  30. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40(22), 7152 (2007).
    [Crossref]
  31. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  32. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
    [Crossref] [PubMed]
  33. S. K. Y. Tang and G. M. Whitesides, “Basic microfluidic and soft lithographic techniques,” in Optofluidics: Fundamentals, Devices and Applications, Y. Fainman, L. Lee, D. Psaltis, and C. Yang, eds. (McGraw-Hill, 2010).
  34. T. Wilkop, Z. Wang, and Q. Cheng, “Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source,” Langmuir 20(25), 11141–11148 (2004).
    [Crossref] [PubMed]
  35. L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
    [Crossref] [PubMed]
  36. P. Guedon and Y. Levy, “Method for characterising a surface, and device therefor,” WO 2002048689.
  37. E. Maillart, “Surface plasmon resonance imaging for simultaneous analysis of multiple biomolecular interactions in real time,” PhD thesis, Universite Paris Sud (2004).
  38. F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
    [Crossref]
  39. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
    [Crossref]
  40. K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
    [Crossref]
  41. T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” US 751347 (1904).
  42. T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
    [Crossref]
  43. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
    [Crossref]
  44. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
    [Crossref]
  45. E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
    [Crossref]
  46. L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
    [Crossref] [PubMed]
  47. Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
    [Crossref] [PubMed]
  48. B. Liu, S. Li, and J. Hu, “Technological advances in high-throughput screening,” Am. J. Pharmacogenomics 4(4), 263–276 (2004).
    [Crossref] [PubMed]
  49. P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
    [Crossref] [PubMed]

2014 (5)

P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular analysis and detection using surface plasmon resonance techniques,” Anal. Chem. 86(6), 2799–2812 (2014).
[Crossref] [PubMed]

P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
[Crossref] [PubMed]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
[Crossref] [PubMed]

2013 (2)

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

E. Boyer-Provera, A. Rossi, L. Oriol, C. Dumontet, A. Plesa, L. Berguiga, J. Elezgaray, A. Arneodo, and F. Argoul, “Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths,” Opt. Express 21(6), 7456–7477 (2013).
[Crossref] [PubMed]

2012 (2)

S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
[Crossref]

R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
[Crossref] [PubMed]

2011 (4)

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
[Crossref] [PubMed]

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

2010 (4)

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

D. Evanko, “Label-free microscopy,” Nat. Methods 7(1), 36 (2010).
[Crossref]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
[Crossref] [PubMed]

2009 (3)

X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17(3), 1671–1678 (2009).
[Crossref] [PubMed]

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

2008 (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (5)

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40(22), 7152 (2007).
[Crossref]

L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett. 32(5), 509–511 (2007).
[Crossref] [PubMed]

2005 (2)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

2004 (3)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

T. Wilkop, Z. Wang, and Q. Cheng, “Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source,” Langmuir 20(25), 11141–11148 (2004).
[Crossref] [PubMed]

B. Liu, S. Li, and J. Hu, “Technological advances in high-throughput screening,” Am. J. Pharmacogenomics 4(4), 263–276 (2004).
[Crossref] [PubMed]

2002 (1)

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

1999 (1)

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

1998 (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref]

1997 (1)

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
[Crossref]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[Crossref]

1993 (1)

1968 (3)

W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am. 58(3), 380–388 (1968).
[Crossref]

A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Stat. Solidi 26, 99–101 (1968).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18(1), 269 (1902).
[Crossref]

Abadian, P. N.

P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular analysis and detection using surface plasmon resonance techniques,” Anal. Chem. 86(6), 2799–2812 (2014).
[Crossref] [PubMed]

P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
[Crossref] [PubMed]

Argoul, F.

Arneodo, A.

Bastmeyer, M.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Bechinger, C.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Bellon, S.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[Crossref]

Berguiga, L.

Bhadriraju, K.

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

Bombera, R.

R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
[Crossref] [PubMed]

S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
[Crossref]

Bouguelia, S.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Boukherroub, R.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Boyer-Provera, E.

Bruls, D. M.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Buhot, A.

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

Calemczuk, R.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Casabona, G.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Chattopadhyay, P. K.

P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
[Crossref] [PubMed]

Cheng, Q.

T. Wilkop, Z. Wang, and Q. Cheng, “Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source,” Langmuir 20(25), 11141–11148 (2004).
[Crossref] [PubMed]

Cherif, B.

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Chinowsky, T. M.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Chun, I. S.

Cortes, S.

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

de Bruijn, H. E.

de Theije, F. K.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Delannoy, S.

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

Dittmer, W. U.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Djurisic, A. B.

Dumontet, C.

Durmort, C.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Eaton, S.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Edwards, T.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

Elazar, J. M.

Elezgaray, J.

Evanko, D.

D. Evanko, “Label-free microscopy,” Nat. Methods 7(1), 36 (2010).
[Crossref]

Evers, T. H.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Fach, P.

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

Fielden, P. R.

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

Foley, K.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Francois, J. M.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Fu, E.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

Giebel, K. F.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Gierahn, T. M.

P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
[Crossref] [PubMed]

Gillette, M.

Goddard, N. J.

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

Goluch, E. D.

P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular analysis and detection using surface plasmon resonance techniques,” Anal. Chem. 86(6), 2799–2812 (2014).
[Crossref] [PubMed]

P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
[Crossref] [PubMed]

Gould, H. J.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Greaves, M. W.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Greve, J.

Grosjean, L.

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Grow, M. S.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

Guedon, P.

P. Guedon and Y. Levy, “Method for characterising a surface, and device therefor,” WO 2002048689.

Habraken, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Halter, M.

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

Hansen, W. N.

Hastanin, J.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Herminghaus, S.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Hide, M.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Hiragun, T.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
[Crossref]

J. Homola and M. Piliarik, “SPR sensor instrumentation,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
[Crossref]

Horii, M.

M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
[Crossref] [PubMed]

Hu, J.

B. Liu, S. Li, and J. Hu, “Technological advances in high-throughput screening,” Am. J. Pharmacogenomics 4(4), 263–276 (2004).
[Crossref] [PubMed]

Hu, L.

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Hulme, J.

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

Ichimura, I.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

Immink, A. H. J.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

Iribe, Y.

M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
[Crossref] [PubMed]

Jamieson, J. J.

P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
[Crossref] [PubMed]

Johnston, K. S.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Kahlman, J. A. H.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Kaneko, S.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Kelley, C. P.

P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular analysis and detection using surface plasmon resonance techniques,” Anal. Chem. 86(6), 2799–2812 (2014).
[Crossref] [PubMed]

Kong, W.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

Kooyman, R. P. H.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40(22), 7152 (2007).
[Crossref]

Leberre, V. A.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Leiderer, P.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Lenaerts, C.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Leroy, L.

R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
[Crossref] [PubMed]

Levy, Y.

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

P. Guedon and Y. Levy, “Method for characterising a surface, and device therefor,” WO 2002048689.

Li, S.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

B. Liu, S. Li, and J. Hu, “Technological advances in high-throughput screening,” Am. J. Pharmacogenomics 4(4), 263–276 (2004).
[Crossref] [PubMed]

Li, X.

Liu, B.

B. Liu, S. Li, and J. Hu, “Technological advances in high-throughput screening,” Am. J. Pharmacogenomics 4(4), 263–276 (2004).
[Crossref] [PubMed]

Liu, J.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

Livache, T.

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
[Crossref]

R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
[Crossref] [PubMed]

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Love, J. C.

P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
[Crossref] [PubMed]

Maeda, F.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

Maillart, E.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

E. Maillart, “Surface plasmon resonance imaging for simultaneous analysis of multiple biomolecular interactions in real time,” PhD thesis, Universite Paris Sud (2004).

Majewski, M. L.

Malins, C.

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Marche, P.

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

Marche, P. N.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Maricot, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Mercey, E.

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Milgram, S.

S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
[Crossref]

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

Millet, L.

Mondani, L.

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Nagaraj, V. J.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Nelson, K.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

Nieuwenhuis, J. H.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Ong, Z.-Y.

Oriol, L.

Osato, K.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

Otto, A.

A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Stat. Solidi 26, 99–101 (1968).
[Crossref]

Ovsyanko, M.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Patel, U.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Pelssers, E. G. M.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Peterson, A.

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

Piliarik, M.

J. Homola and M. Piliarik, “SPR sensor instrumentation,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
[Crossref]

Pillet, F.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Plant, A.

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

Plesa, A.

Pop, E.

Popescu, G.

Prins, M. W. J.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Rakic, A. D.

Riedel, M.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Roederer, M.

P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
[Crossref] [PubMed]

Roget, A.

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Rossi, A.

Roupioz, Y.

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
[Crossref]

R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
[Crossref] [PubMed]

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

Scheimpflug, T.

T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” US 751347 (1904).

Schleipen, J. J. H. B.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Shan, X.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Shinohara, H.

M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
[Crossref] [PubMed]

Singh, K.

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

Slimani, S.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Sollier, E.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

Suraniti, E.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

Suzuki, M.

M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
[Crossref] [PubMed]

Szunerits, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Tandogan, N.

P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
[Crossref] [PubMed]

Tang, S. K. Y.

S. K. Y. Tang and G. M. Whitesides, “Basic microfluidic and soft lithographic techniques,” in Optofluidics: Fundamentals, Devices and Applications, Y. Fainman, L. Lee, D. Psaltis, and C. Yang, eds. (McGraw-Hill, 2010).

Tao, N.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Thibault, C.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Tona, A.

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

Trevisiol, E.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Ünlü, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

van der Wijk, T.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

van Lankvelt, P. J. W.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

van Zon, J. B. A.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Vernet, T.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Verschuren, C. A.

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40(22), 7152 (2007).
[Crossref]

Vieu, C.

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Vilcot, J.-P.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Villiers, M.-B.

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

Wan, Y.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

Wang, S.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Wang, W.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Wang, Z.

Watanabe, T.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

Weiland, U.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Whitesides, G. M.

S. K. Y. Tang and G. M. Whitesides, “Basic microfluidic and soft lithographic techniques,” in Optofluidics: Fundamentals, Devices and Applications, Y. Fainman, L. Lee, D. Psaltis, and C. Yang, eds. (McGraw-Hill, 2010).

Wijaya, E.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

Wiktor, P.

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Wilkop, T.

T. Wilkop, Z. Wang, and Q. Cheng, “Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source,” Langmuir 20(25), 11141–11148 (2004).
[Crossref] [PubMed]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18(1), 269 (1902).
[Crossref]

Yager, P.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

Yamamoto, K.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

Yanase, Y.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
[Crossref]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Zhang, S.

Zhang, X.

Zheng, Z.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

Am. J. Pharmacogenomics (1)

B. Liu, S. Li, and J. Hu, “Technological advances in high-throughput screening,” Am. J. Pharmacogenomics 4(4), 263–276 (2004).
[Crossref] [PubMed]

Anal. Biochem. (1)

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy, P. N. Marche, M.-B. Villiers, and T. Livache, “A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process,” Anal. Biochem. 347(2), 193–200 (2005).
[Crossref] [PubMed]

Anal. Chem. (2)

P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular analysis and detection using surface plasmon resonance techniques,” Anal. Chem. 86(6), 2799–2812 (2014).
[Crossref] [PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Analyst (2)

M. Horii, H. Shinohara, Y. Iribe, and M. Suzuki, “Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager,” Analyst 136(13), 2706–2711 (2011).
[Crossref] [PubMed]

J. Hulme, C. Malins, K. Singh, P. R. Fielden, and N. J. Goddard, “Internally-referenced resonant mirror for chemical and biochemical sensing,” Analyst 127(9), 1233–1236 (2002).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomicrofluidics (1)

P. N. Abadian, N. Tandogan, J. J. Jamieson, and E. D. Goluch, “Using surface plasmon resonance imaging to study bacterial biofilms,” Biomicrofluidics 8(2), 021804 (2014).
[Crossref] [PubMed]

Biophys. J. (2)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[Crossref] [PubMed]

Biosens. Bioelectron. (5)

R. Bombera, L. Leroy, T. Livache, and Y. Roupioz, “DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging,” Biosens. Bioelectron. 33(1), 10–16 (2012).
[Crossref] [PubMed]

S. Milgram, S. Cortes, M.-B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, “On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin,” Biosens. Bioelectron. 26(5), 2728–2732 (2011).
[Crossref]

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9–10), 2208–2215 (2007).
[Crossref]

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
[Crossref]

BMC Cell Biol. (1)

A. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(16), 1–17 (2009).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Curr. Opin. Solid. St. M. (1)

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid. St. M. 15(5), 208–224 (2011).
[Crossref]

J. Appl. Microbiol. (1)

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, “Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices,” J. Appl. Microbiol. 117(2), 537–546 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40(22), 7152 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, and T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 36(1B), 456–459 (1997).
[Crossref]

Lab. Chip (3)

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M.-B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab. Chip 7(9), 1206–1208 (2007).
[Crossref] [PubMed]

D. M. Bruls, T. H. Evers, J. A. H. Kahlman, P. J. W. van Lankvelt, M. Ovsyanko, E. G. M. Pelssers, J. J. H. B. Schleipen, F. K. de Theije, C. A. Verschuren, T. van der Wijk, J. B. A. van Zon, W. U. Dittmer, A. H. J. Immink, J. H. Nieuwenhuis, and M. W. J. Prins, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab. Chip 9(24), 3504–3510 (2009).
[Crossref] [PubMed]

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, “On-chip microbial culture for the specific detection of very low levels of bacteria,” Lab. Chip 13(20), 4024–4032 (2013).
[Crossref] [PubMed]

Langmuir (2)

T. Wilkop, Z. Wang, and Q. Cheng, “Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source,” Langmuir 20(25), 11141–11148 (2004).
[Crossref] [PubMed]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Methods (1)

S. Milgram, R. Bombera, T. Livache, and Y. Roupioz, “Antibody microarrays for label-free cell-based applications,” Methods 56(2), 326–333 (2012).
[Crossref]

Nat. Chem. (1)

W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, and N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nat. Chem. 3(3), 249–255 (2011).
[Crossref] [PubMed]

Nat. Immunol. (1)

P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, and J. C. Love, “Single-cell technologies for monitoring immune systems,” Nat. Immunol. 15(2), 128–135 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

D. Evanko, “Label-free microscopy,” Nat. Methods 7(1), 36 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Stat. Solidi (1)

A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Stat. Solidi 26, 99–101 (1968).
[Crossref]

Proc. Phys. Soc. London (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18(1), 269 (1902).
[Crossref]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[Crossref]

Sens. Actuator B-Chem. (2)

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuator B-Chem. 193, 467–471 (2014).
[Crossref]

F. Pillet, C. Thibault, S. Bellon, E. Maillart, E. Trevisiol, C. Vieu, J. M. Francois, and V. A. Leberre, “Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems,” Sens. Actuator B-Chem. 147(1), 87–92 (2010).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135 (1968).

Other (6)

J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
[Crossref]

J. Homola and M. Piliarik, “SPR sensor instrumentation,” in Surface Plasmon Resonance Based Sensors (Springer, 2006).
[Crossref]

S. K. Y. Tang and G. M. Whitesides, “Basic microfluidic and soft lithographic techniques,” in Optofluidics: Fundamentals, Devices and Applications, Y. Fainman, L. Lee, D. Psaltis, and C. Yang, eds. (McGraw-Hill, 2010).

P. Guedon and Y. Levy, “Method for characterising a surface, and device therefor,” WO 2002048689.

E. Maillart, “Surface plasmon resonance imaging for simultaneous analysis of multiple biomolecular interactions in real time,” PhD thesis, Universite Paris Sud (2004).

T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” US 751347 (1904).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Prism-based SPRi optical configurations and geometrical aberrations illustration with corresponding small-FOV SPR images of 10-μm-wide PDMS pillars in water on gold-coated SF11 prisms. (a and a’) Classic imaging mode with a prism optimized for very-wide-FOV: the virtual image is normal to the main ray which is parallel to the optical axis, α=0°. (b and b’) Line-scan imaging mode with prism optimized for resolution: the out face is normal to the main ray which is parallel to the optical axis. The image is reconstructed from 100 strips. (c and c’) Classic imaging mode with prism optimized for resolution: the out face is normal to the main ray, the optical axis is normal to the virtual image. (d and e) Geometrical aberration illustration at a plane interface for main ray with an angle of incidence i≠0 and i=0 (zoom in the inset). Scale bar: 100 μm.
Fig. 2
Fig. 2 Schematic representation of the projection of O’ virtual points onto the virtual image plane that passes by the mean intersection point O’ m .
Fig. 3
Fig. 3 Plasmonic properties at the metal/water interface over the visible spectrum. (a) Propagation length Lx. (b) Penetration depth Lz. (c) Optimal thickness of metal. (d) Internal angle of maximal sensitivity θSPRi−int. (e) Sensitivity. (f) trade-off visualization: sensitivity with respect to Lx.
Fig. 4
Fig. 4 Very-small-FOV SPR images of less than 1-μm-wide PDMS pillars in water at increasing distance d from the imaging side edge of the prism. SPW propagate downward. (a and b), at λ =632 nm. (c and d), at λ = 721 nm. Images were taken with a gold-coated N-SF66 prism (Ap = 83°) in the configuration of Fig. 1(b). (e) Resolution perpendicular and parallel (before the step) to the SPW with respect to the distance d at λ = 632 nm in water with a N-SF66 prism. Each point is an average of 1 to 3 PDMS pillars. The constant error bars are equal to the maximum difference observed for each orientation. Scale bar: 50 μm.
Fig. 5
Fig. 5 Very-wide and wide-FOV SPR images of the micro-patterned PDMS stamp in water using gold-coated SF11 prism optimized for very-wide-FOV (a) (Ap = 32°) and N-SF66 prism optimized for resolution (b and c) (Ap = 83°). SPW travel upward. (a) Classic imaging mode in configuration of Fig. 1(a). (b) Line-scan imaging mode (100 strips) obtained in configuration of Fig. 1(b). (c) Classic imaging mode in configuration of Fig. 1(c). (a’–c’) Corresponding magnifications on PDMS pillars of 30, 20, 10, 4, 3 and 2 μm diameters. Scale bars: 1 mm (a and b), 500 μm (c), 200 μm (a’– c’).
Fig. 6
Fig. 6 Optical and SPR images of individual eukaryote cells (a – c) and bacteria (d and e) at λ = 632 mm. (a), Optical image before the rinsing step. Jurkat cells are randomly distributed. (b) Line-scan SPR image (40 strips) of the same spot before rinsing step. The extension of the anti-CD3-grafted-polypyrrole spot is clearly visible on the SPR images because anchored cells generate a signal much larger than the ones sedimented on bare gold. (c) Optical image after the rinsing step. Only captured cells remain. (d) Line-scan SPR image (70 strips) of Staphylococcus epidermidis attached to the gold surface by poly-L-Lysine. (e) Corresponding bright-field optical image. Individual bacteria are resolved when their respective separation is larger than the spatial resolution. Scale bars: 100 μm (a – c), 25 μm (d and e).
Fig. 7
Fig. 7 Comparison between bright-field and line-scan imaging mode SPR images of bacterial signals on large field-of-views. (a and a’) 4× objective, FOV=4.3 mm2 The surface density of individual bacterial signals is about 1,900/mm2, which leads to more than 8,000 detection on the entire image. (b and b’) 10× objective, FOV=1.6 mm2. (c and c’) 20× objective, FOV=0.31 mm2. Magnification on a single bacteria pointed by the arrow in the inset. Scale bars: 500 μm (a and a’), 250 μm (b and b’), 100 μm (c and c’), 20 μm (inset).

Tables (3)

Tables Icon

Table 1 Apex angles at +/− 0.5° for 50-nm-gold-coated-prisms of refractive index from 1.5 to 2.0 at λ = 632 nm in water and calculated at an angular diffusion of +/− 0.1° around θSPRi−int. Corresponding internal and external angles of maximal sensitivity.

Tables Icon

Table 2 Optical parameters of prism-based SPRi at λ = 632 nm in water for different prism glasses. Ap is given in degrees.

Tables Icon

Table 3 θSPRi−int and θSPRi−ext at +/− 0.5° for 50-nm-gold-coated-prisms optimized for very-wide-FOV at λ = 632 nm in water.

Metrics