Abstract

We use pump-probe spectroscopy and continuous wave cross-phase and cross-amplitude modulation measurements to study the optical nonlinearity of a hydrogenated amorphous silicon (a-Si:H) nanowire waveguide, and we compare the results to those of a crystalline silicon waveguide of similar dimensions. The a-Si:H nanowire shows essentially zero instantaneous two-photon absorption, but it displays a strong, long-lived non-instantaneous nonlinearity that is both absorptive and refractive. Power scaling measurements show that this non-instantaneous nonlinearity in a-Si:H scales as a third-order nonlinearity, and the refractive component possesses the opposite sign to that expected for free-carrier dispersion.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices

Kazuhiro Ikeda, Yaoming Shen, and Yeshaiahu Fainman
Opt. Express 15(26) 17761-17771 (2007)

Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide

Yuya Shoji, Takeshi Ogasawara, Toshihiro Kamei, Youichi Sakakibara, Satoshi Suda, Kenji Kintaka, Hitoshi Kawashima, Makoto Okano, Toshifumi Hasama, Hiroshi Ishikawa, and Masahiko Mori
Opt. Express 18(6) 5668-5673 (2010)

Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L.K. Oxenløwe, G. Roelkens, and R. Baets
Opt. Express 19(26) B146-B153 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
    [Crossref]
  2. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
    [Crossref] [PubMed]
  3. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 8998–9005 (2010).
    [Crossref] [PubMed]
  4. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
    [Crossref] [PubMed]
  5. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraga, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19, B146–B153 (2011).
    [Crossref]
  6. C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
    [Crossref]
  7. J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
    [Crossref] [PubMed]
  8. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [Crossref] [PubMed]
  9. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22, 3797–3810 (2014).
    [Crossref] [PubMed]
  10. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
    [Crossref] [PubMed]
  11. S. Suda, K. Tanizawa, Y. Skakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
    [Crossref] [PubMed]
  12. S. Clemmen, A. Perret, S. K. Selvaraja, D. van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
    [Crossref] [PubMed]
  13. S. Uvin, U. D. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 380–381.
  14. K. G. Petrillo, K.-Y. Wang, A. C. Foster, and M. A. Foster, “Highly sensitive ultrafast pulse characterization using hydrogenated amorphous silicon waveguides,” Opt. Express 21, 31229–31238 (2013).
    [Crossref]
  15. K.-Y. Wang, M. A. Foster, and A. C. Foster, “Wavelength-agile near-IR chip-based optical parametric oscillator using a deposited silicon waveguide,” in CLEO: 2013 Postdeadline, OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper CTh5D.7.
  16. K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–916 (2014).
    [Crossref] [PubMed]
  17. X. Gai, D.-Y. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing,” Opt. Express 22, 9948–9958 (2014).
    [Crossref] [PubMed]
  18. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [Crossref] [PubMed]
  19. K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
    [Crossref]
  20. K.-Y. Wang and A. C. Foster, “GHz Near-IR Optical Parametric Amplifier using a Hydrogenated Amorphous Silicon Waveguide,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3I.7.
  21. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15, 17761–17771 (2007).
    [Crossref] [PubMed]
  22. J. J. Wathen, V. R. Pagán, and T. E. Murphy, “Simple method to characterize nonlinear refraction and loss in optical waveguides,” Opt. Lett. 37, 4693–4695 (2012).
    [Crossref] [PubMed]
  23. R. J. Suess, M. M. Jadidi, K. Kim, and T. E. Murphy, “Characterization of optical nonlinearities in nanoporous silicon waveguides via pump-probe heterodyning technique,” Opt. Express 22, 17466–17477 (2014).
    [Crossref] [PubMed]
  24. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
    [Crossref] [PubMed]
  25. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
    [Crossref]
  26. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [Crossref] [PubMed]
  27. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
    [Crossref] [PubMed]
  28. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
    [Crossref]
  29. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  30. A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20, 4085–4101 (2012).
    [Crossref] [PubMed]

2014 (5)

2013 (3)

2012 (5)

2011 (2)

2010 (3)

2009 (1)

2008 (1)

2007 (1)

2005 (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref] [PubMed]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

1993 (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

1989 (2)

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref] [PubMed]

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[Crossref]

Almeida, V. R.

Andrejco, M. J.

Baets, R.

Baldini, E.

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

Ballesteros, G. C.

Beausoleil, R. G.

Ben Bakir, B.

Bogaerts, W.

Cardenas, J.

Carletti, L.

Chen, L.

Choi, D.-Y.

Clemmen, S.

Cristiani, I.

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

Dave, U. D.

S. Uvin, U. D. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 380–381.

DeLong, K. W.

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref] [PubMed]

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[Crossref]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Emplit, P.

Fainman, Y.

Fallahkhair, A. B.

Fattal, D. A.

Fedeli, J. M.

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref] [PubMed]

Fédéli, J.-M.

Foster, A. C.

K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–916 (2014).
[Crossref] [PubMed]

K. G. Petrillo, K.-Y. Wang, A. C. Foster, and M. A. Foster, “Highly sensitive ultrafast pulse characterization using hydrogenated amorphous silicon waveguides,” Opt. Express 21, 31229–31238 (2013).
[Crossref]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

K.-Y. Wang, M. A. Foster, and A. C. Foster, “Wavelength-agile near-IR chip-based optical parametric oscillator using a deposited silicon waveguide,” in CLEO: 2013 Postdeadline, OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper CTh5D.7.

K.-Y. Wang and A. C. Foster, “GHz Near-IR Optical Parametric Amplifier using a Hydrogenated Amorphous Silicon Waveguide,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3I.7.

Foster, M. A.

Gai, X.

Galili, M.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Gautier, P.

Grillet, C.

Grosse, P.

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Hasama, T.

Hu, H.

Huang, Y.-P.

Ikeda, K.

Ippen, E. P.

Ishikawa, H.

Itoga, E.

Jadidi, M. M.

Jeppesen, P.

Ji, H.

Kamei, T.

Kärtner, F. X.

Kawashima, H.

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Khilo, A.

Kim, K.

Kintaka, K.

Kowligy, A. S.

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Kumar, P.

Kuyken, B.

Lacava, C.

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

Lee, K. F.

Leo, F.

S. Uvin, U. D. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 380–381.

Li, K. S.

Lipson, M.

Luther-Davies, B.

Manako, S.

Martí, J.

Massar, S.

Matres, J.

Menezo, S.

Minzioni, P.

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

Mizrahi, V.

Monat, C.

Mori, M.

Morthier, G.

Moss, D. J.

Motamedi, A. R.

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Murphy, T. E.

Nakanishi, K.

Namiki, S.

Narayanan, K.

Nejadmalayeri, A. H.

Ogasawara, T.

Okano, M.

Omoda, E.

Oton, C. J.

Oxenløwe, L. K.

Pagán, V. R.

Panepucci, R. R.

Pelc, J. S.

Perret, A.

Petrillo, K. G.

Poitras, C. B.

Preble, S. F.

Preston, K.

Pu, M.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Rivoire, K.

Robinson, J. T.

Rochford, K. B.

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[Crossref]

Roelkens, G.

Saifi, M. A.

Sakakibara, Y.

Santori, C.

Selvaraga, S. K.

Selvaraja, S.

S. Uvin, U. D. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 380–381.

Selvaraja, S. K.

Shen, Y.

Shoji, Y.

Skakakibara, Y.

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Stegeman, G. I.

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[Crossref]

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref] [PubMed]

Suda, S.

Suess, R. J.

Takei, R.

Tanizawa, K.

Tartara, L.

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

Uvin, S.

S. Uvin, U. D. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 380–381.

Van Thourhout, D.

Velev, V. G.

Vo, S.

Wang, K.-Y.

K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–916 (2014).
[Crossref] [PubMed]

K. G. Petrillo, K.-Y. Wang, A. C. Foster, and M. A. Foster, “Highly sensitive ultrafast pulse characterization using hydrogenated amorphous silicon waveguides,” Opt. Express 21, 31229–31238 (2013).
[Crossref]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

K.-Y. Wang, M. A. Foster, and A. C. Foster, “Wavelength-agile near-IR chip-based optical parametric oscillator using a deposited silicon waveguide,” in CLEO: 2013 Postdeadline, OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper CTh5D.7.

K.-Y. Wang and A. C. Foster, “GHz Near-IR Optical Parametric Amplifier using a Hydrogenated Amorphous Silicon Waveguide,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3I.7.

Wathen, J. J.

Appl. Phys. Lett. (3)

C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103, 141103 (2013).
[Crossref]

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

J. Lightwave Technol. (2)

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Opt. Express (13)

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref] [PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20, 4085–4101 (2012).
[Crossref] [PubMed]

X. Gai, D.-Y. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing,” Opt. Express 22, 9948–9958 (2014).
[Crossref] [PubMed]

K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15, 17761–17771 (2007).
[Crossref] [PubMed]

R. J. Suess, M. M. Jadidi, K. Kim, and T. E. Murphy, “Characterization of optical nonlinearities in nanoporous silicon waveguides via pump-probe heterodyning technique,” Opt. Express 22, 17466–17477 (2014).
[Crossref] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
[Crossref] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 8998–9005 (2010).
[Crossref] [PubMed]

K. G. Petrillo, K.-Y. Wang, A. C. Foster, and M. A. Foster, “Highly sensitive ultrafast pulse characterization using hydrogenated amorphous silicon waveguides,” Opt. Express 21, 31229–31238 (2013).
[Crossref]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraga, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19, B146–B153 (2011).
[Crossref]

J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref] [PubMed]

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22, 3797–3810 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

S. Suda, K. Tanizawa, Y. Skakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref] [PubMed]

S. Clemmen, A. Perret, S. K. Selvaraja, D. van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[Crossref] [PubMed]

K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–916 (2014).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref] [PubMed]

J. J. Wathen, V. R. Pagán, and T. E. Murphy, “Simple method to characterize nonlinear refraction and loss in optical waveguides,” Opt. Lett. 37, 4693–4695 (2012).
[Crossref] [PubMed]

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref] [PubMed]

Other (3)

K.-Y. Wang and A. C. Foster, “GHz Near-IR Optical Parametric Amplifier using a Hydrogenated Amorphous Silicon Waveguide,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3I.7.

K.-Y. Wang, M. A. Foster, and A. C. Foster, “Wavelength-agile near-IR chip-based optical parametric oscillator using a deposited silicon waveguide,” in CLEO: 2013 Postdeadline, OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper CTh5D.7.

S. Uvin, U. D. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 380–381.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 False-color images of the calculated mode for (a) the a-Si:H nanowire and (b) the c-Si nanowire. The images show the magnitude of the x-component of the electric field for the TE eigenstate.
Fig. 2
Fig. 2 The experimental setup used to measure the nonlinear properties of the nanowires. The setup is shown with and without an optional spool of dispersive fiber. CW: continuous-wave; EDFA: erbium-doped fiber amplifier; MZM: Mach-Zehnder modulator; OBPF: optical bandpass filter; VOA: variable optical attenuator; PD: high-speed photodiode.
Fig. 3
Fig. 3 (a) Magnitude and (b) phase of S21 vs. the modulation frequency for the case with no dispersive fiber in the setup. Red traces represent the a-Si:H nanowire while blue traces represent the c-Si nanowire.
Fig. 4
Fig. 4 (a) The magnitude of S21 vs. the square of the modulation frequency with dispersive fiber in the setup. (b) f u 2 vs. 2u for both waveguides obtained from 10 consecutive S21(f) measurements. Inset: The same linear fits for both waveguides, enlarged to show the difference in the intercepts. The nonlinear loss tangent of Eq. (2) is calculated using a linear regression of the null-frequencies, and the uncertainty is estimated using the 95% confidence bounds obtained from the least-squares fit.
Fig. 5
Fig. 5 The experimental setup used to measure transient nonlinear absorption in the nanowires. MLL: mode-locked laser; CW: continuous wave; VOA: variable optical attenuator; OBPF: optical bandpass filter; EDFA: erbium-doped fiber amplifier; PD: high-speed photodiode; DSO: digital sampling oscilloscope.
Fig. 6
Fig. 6 Transient absorption of the probe for (a) the a-Si:H nanowire and (b) the c-Si nanowire. Top: normalized probe power vs. time. Bottom: Fractional absorption of the probe vs. time. Zero time-delay is registered to the extremum in each transient and positive time indicates time since the extremum.
Fig. 7
Fig. 7 (a) Fractional absorption of the probe versus the applied pump power for the a-Si:H waveguide. The solid red line is a guide for the eye. (b) Transient absorption of the probe (the same as the highest-power trace in Fig. 6(a), but the scale is adjusted to show a longer interval).
Fig. 8
Fig. 8 The two-frequency heterodyne pump-probe experiment. The inset shows the relative timing of the reference, pump and probe pulses. MLL: mode-locked laser; AOFS: acousto-optic frequency shifter; HWP: half waveplate; PBS: polarizing beam splitter.
Fig. 9
Fig. 9 Time-resolved phase transients for the a-Si:H (red) and c-Si (blue) nanowires. In these experiments, the launched pump powers were 264 μW and 431 μW, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f u 2 = c 2 D L λ 2 ( 2 u + 2 π ϕ ) , u = 0 , 1 , 2
tan ϕ = γ I γ R = λ α 2 4 π n 2

Metrics