Abstract

We design, fabricate, and characterize a 7-bit reconfigurable optical true time delay line consisting of Mach-Zehnder interferometer (MZI) switches on the silicon photonics platform. Variable optical attenuators (VOAs) are embedded to suppress the inter-symbol crosstalk caused by the finite extinction ratio of switches. The device can provide a maximum of 1.27 ns delay with a 10 ps resolution over a wide wavelength range. Eye diagram measurement of a 25 Gbps 251-1 pseudo-random bit sequence (PRBS) signal reveals the power penalties only increase 0.17 dB and 0.77 dB after transmission through the shortest (reference) and the longest (1.27 ns delay) paths, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Jingya Xie, Linjie Zhou, Zuxiang Li, Jinting Wang, and Jianping Chen, "Seven-bit reconfigurable optical true time delay line based on silicon integration: erratum," Opt. Express 22, 25516-25516 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-21-25516

OSA Recommended Articles
Continuously tunable ultra-thin silicon waveguide optical delay line

Xinyi Wang, Linjie Zhou, Ruifei Li, Jingya Xie, Liangjun Lu, Kan Wu, and Jianping Chen
Optica 4(5) 507-515 (2017)

Scalable and reconfigurable true time delay line based on an ultra-low-loss silica waveguide

Qian Qian Song, Zhe Feng Hu, and Kai Xin Chen
Appl. Opt. 57(16) 4434-4439 (2018)

Continuously tunable reflective-type optical delay lines using microring resonators

Jingya Xie, Linjie Zhou, Zhi Zou, Jinting Wang, Xinwan Li, and Jianping Chen
Opt. Express 22(1) 817-823 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News 18(11), 40–45 (2007).
    [Crossref]
  2. J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
    [Crossref] [PubMed]
  3. D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30 (2005).
  4. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref] [PubMed]
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  6. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
    [Crossref]
  7. J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for x-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
    [Crossref]
  8. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
    [Crossref] [PubMed]
  9. Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Proceedings of Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2014), paper SM4G.4.
    [Crossref]
  10. M. S. Rasras, J. Le Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, Sydney, 2005), pp. 720–721.
    [Crossref]
  11. K. Horikawa, I. Ogawa, H. Ogawa, and T. Kitoh, “Photonic switched true time delay beam forming network integrated on silica waveguide circuits,” in Proceedings of IEEE Conference on MTT-S International (Institute of Electrical and Electronics Engineers, Orlando, 1995), pp. 65–68.
    [Crossref]
  12. R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
    [Crossref]
  13. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  14. M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
    [Crossref]
  15. L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
    [Crossref] [PubMed]
  16. J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14-15), 2629–2636 (2002).
    [Crossref]
  17. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009).
    [Crossref] [PubMed]
  18. P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24(6), 512–514 (2012).
    [Crossref]
  19. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
    [Crossref] [PubMed]
  20. J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22(1), 817–823 (2014).
    [Crossref] [PubMed]
  21. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [Crossref] [PubMed]
  22. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
    [Crossref] [PubMed]
  23. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
    [Crossref]
  24. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008).
    [Crossref]
  25. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011).
    [Crossref] [PubMed]
  26. Z. Chen, L. Zhou, and J. Chen, “Analysis of a silicon reconfigurable feed-forward optical delay line,” IEEE Photon. J. 6(1), 1–11 (2014).
    [Crossref]
  27. X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Mach-Zehnder-based five-port silicon router for optical interconnects,” Opt. Lett. 38(10), 1703–1705 (2013).
    [Crossref] [PubMed]
  28. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002), Chap. 4.
  29. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
    [Crossref] [PubMed]
  30. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
    [Crossref] [PubMed]
  31. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
    [Crossref] [PubMed]
  32. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
    [Crossref]
  33. C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
    [Crossref]
  34. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39(3), 701–703 (2014).
    [Crossref] [PubMed]
  35. D. Leuenberger, J. Yao, M. M. Lee, and M. C. Wu, “Experimental demonstration of MEMS-tunable slow light in silicon microdisk resonators,” in Proceedings of Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuC6.
  36. J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
    [Crossref]

2014 (4)

2013 (4)

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Mach-Zehnder-based five-port silicon router for optical interconnects,” Opt. Lett. 38(10), 1703–1705 (2013).
[Crossref] [PubMed]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

2012 (5)

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

2009 (2)

2008 (2)

2007 (3)

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News 18(11), 40–45 (2007).
[Crossref]

2005 (2)

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30 (2005).

2004 (1)

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for x-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

2002 (1)

J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14-15), 2629–2636 (2002).
[Crossref]

1999 (1)

1996 (1)

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Arita, Y.

Assefa, S.

Baba, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[Crossref] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008).
[Crossref]

Baehr-Jones, T.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Baghban, M. A.

Barton, J. S.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Bauters, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Blumenthal, D. J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Bowers, J. E.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Boyd, R. W.

J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14-15), 2629–2636 (2002).
[Crossref]

Burla, M.

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
[Crossref]

Cardenas, J.

Chen, J.

Chen, M. Y.

Chen, R. T.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, L. Zhou, and J. Chen, “Analysis of a silicon reconfigurable feed-forward optical delay line,” IEEE Photon. J. 6(1), 1–11 (2014).
[Crossref]

Chu, T.

Cooper, M. L.

Eggleton, B. J.

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

Fathpour, S.

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
[Crossref]

A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
[Crossref] [PubMed]

Foster, M. A.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Gaeta, A. L.

Garcia, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Gauthier, D.

D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30 (2005).

Green, W. M.

Gupta, G.

Harris, N. C.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Hayakawa, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Heck, M. J. R.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Heebner, J. E.

J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14-15), 2629–2636 (2002).
[Crossref]

Heideman, R.

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Hochberg, M.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Hoekman, M.

Hosoi, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Hosseini, A.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

Howley, B.

Ishikura, N.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[Crossref] [PubMed]

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Khan, M. R.

Khan, S.

Khurgin, J. B.

Kim, B. G.

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for x-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Lee, B. S.

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for x-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Lee, M. M.

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Lee, R. K.

Leinse, A.

Leuenberger, D.

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Li, W.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Li, X.

Li, Z.

Lin, C.-Y.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

Lipson, M.

Lira, H. L. R.

Lowell, J. R.

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News 18(11), 40–45 (2007).
[Crossref]

Lu, L.

Marpaung, D.

Martinelli, M.

Melloni, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
[Crossref]

A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
[Crossref] [PubMed]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

Mookherjea, S.

Moreira, R. L.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
[Crossref]

A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
[Crossref] [PubMed]

Morton, P.

Morton, P. A.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009).
[Crossref] [PubMed]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Novack, A.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Parra, E.

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News 18(11), 40–45 (2007).
[Crossref]

Patel, D.

Plant, D. V.

Poitras, C. B.

Ran, D.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Roeloffzen, C.

Scherer, A.

Schneider, M. A.

Sherwood-Droz, N.

Shi, W.

Shin, J. D.

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for x-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

Shinkawa, M.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Shinobu, F.

Subbaraman, H.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Tamanuki, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[Crossref] [PubMed]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Veerasubramanian, V.

Vlasov, Y. A.

Wang, A. X.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

Wang, J.

Wang, X.

Wu, M. C.

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Xia, F.

Xiao, X.

Xie, J.

Xu, H.

Xu, Y.

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

Yariv, A.

Yi, Z.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Yu, J.

Yu, Y.

Zhang, B.

Zhe, X.

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Zhou, L.

Zhu, L.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

Zhuang, L.

Zou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101(5), 051101 (2012).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007).
[Crossref]

IEEE Photon. J. (1)

Z. Chen, L. Zhou, and J. Chen, “Analysis of a silicon reconfigurable feed-forward optical delay line,” IEEE Photon. J. 6(1), 1–11 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (3)

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for x-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

IEEE Solid-State Circuits Mag. (1)

M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

J. Mod. Opt. (1)

J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14-15), 2629–2636 (2002).
[Crossref]

Laser Photon. Rev. (1)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6(1), 74–96 (2012).
[Crossref]

Nat. Commun. (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref] [PubMed]

Nat. Photon. (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008).
[Crossref]

Nature (1)

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Opt. Photon. News (1)

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News 18(11), 40–45 (2007).
[Crossref]

Phys. World (1)

D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30 (2005).

Other (5)

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Proceedings of Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2014), paper SM4G.4.
[Crossref]

M. S. Rasras, J. Le Grange, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Kasper, and S. S. Patel, “Integrated scalable continuously tunable variable optical delay lines” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, Sydney, 2005), pp. 720–721.
[Crossref]

K. Horikawa, I. Ogawa, H. Ogawa, and T. Kitoh, “Photonic switched true time delay beam forming network integrated on silica waveguide circuits,” in Proceedings of IEEE Conference on MTT-S International (Institute of Electrical and Electronics Engineers, Orlando, 1995), pp. 65–68.
[Crossref]

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002), Chap. 4.

D. Leuenberger, J. Yao, M. M. Lee, and M. C. Wu, “Experimental demonstration of MEMS-tunable slow light in silicon microdisk resonators,” in Proceedings of Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuC6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Topologic structure of the silicon N-bit RTTDL. (b) 3-D view of the single-arm-modulated MZI used as an optical switch. (c) Cross-sectional view of the p-i-n diode for optical phase tuning and optical power attenuation.
Fig. 2
Fig. 2 (a) Mask layout of the entire RTTDL. (b) Optical microscope image of the fabricated device. (c) Device after wire-bonding to a PCB. (d) Zoom-in view of the wire-bonding between Al pads on chip and Au pads on PCB.
Fig. 3
Fig. 3 Measured transmission spectra of the device. (a) 0 delay without VOAs; (b) 1.27 ns delay without VOAs; (c) 0 delay with VOAs; (d) 1.27 ns delay with VOAs.
Fig. 4
Fig. 4 Experimental setup for optical signal transmission experiment. PPG: pulse pattern generator; BPF: band-pass filter; PC: polarization controller; EDFA: erbium doped fiber amplifier; AM: amplitude modulator; PD: photodetector; DUT: device under test.
Fig. 5
Fig. 5 Measured optical output waveforms from the device showing 10 ps to 1.27 ns optical delays. The blue lines are the reference signals passing through the shortest path. The red lines represent various delayed signals upon reconfiguration of the delay line. The relative delay values are labeled on the graphs.
Fig. 6
Fig. 6 (a)-(c) Measured eye diagrams of a 25 Gbps 251 −1 PRBS signal for (a) the BtB transmission, (b) the minimum delay (reference path), and (c) the maximum delay (1.27 ns). (d) and (e) Measured frequency responses of the unwrapped transmission phase for (d) the minimum and (e) the maximum delays.

Tables (2)

Tables Icon

Table 1 Summary of the RTTDL Performance

Tables Icon

Table 2 Comparison of Various Optical Delay Lines Obtained from Some Example Devices

Metrics