Abstract

We investigate the evolution of asymmetric self-accelerating finite energy Airy pulses (FEAP) in optical fibers with emphasis on the role of Raman scattering. We show that the Raman-induced frequency shift (RIFS) of soliton initiated by an asymmetric self-accelerating FEAP depends not only on the launched peak power but also on the truncation coefficient imposed on the asymmetric self-accelerating FEAP. We find that the RIFS of asymmetric self-accelerating FEAP increases with a decrease in the truncation coefficient, while the peak power and spectrum width of the outermost red shift of the shedding soliton spectrum are almost unchanged. The time and frequency shifts of the shedding soliton are found to be sensitive to the truncation coefficient when the truncation coefficient is in the range of 0 to 0.1. These excellent features would lead to the realization of a RIFS-based tunable light source by launching self-accelerating FEAP with different truncation coefficient into an optical fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects

Lifu Zhang, Jinggui Zhang, Ying Chen, Anling Liu, and Guangcan Liu
J. Opt. Soc. Am. B 31(4) 889-897 (2014)

Modulation instability of finite energy Airy pulse in optical fiber

Lifu Zhang and Haizhe Zhong
Opt. Express 22(14) 17107-17115 (2014)

Dressed dynamics of two time-reversed shapes of Airy pulses in a relaxing nonlinear medium

Xiaohui Shi, Chao Tan, Yanfeng Bai, Rui Wang, Ziyang Zhang, and Xiquan Fu
J. Opt. Soc. Am. B 32(9) 1816-1823 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  2. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [Crossref] [PubMed]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  4. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
    [Crossref]
  5. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
    [Crossref]
  6. C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
    [Crossref]
  7. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
    [Crossref] [PubMed]
  8. Y. Zhang, M. R. Belić, H. Zheng, H. Chen, C. Li, Y. Li, and Y. Zhang, “Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media,” Opt. Express 22(6), 7160–7171 (2014).
    [Crossref] [PubMed]
  9. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]
  10. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19(10), 1653–1660 (1980).
    [Crossref] [PubMed]
  11. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18(5), 678–682 (1979).
    [Crossref] [PubMed]
  12. C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
    [Crossref] [PubMed]
  13. A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
    [Crossref]
  14. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
    [Crossref] [PubMed]
  15. I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
    [Crossref] [PubMed]
  16. R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013).
    [Crossref] [PubMed]
  17. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
    [Crossref] [PubMed]
  18. S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
    [Crossref]
  19. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011).
    [Crossref] [PubMed]
  20. Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
    [Crossref] [PubMed]
  21. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
    [Crossref] [PubMed]
  22. L. Zhang, J. Zhang, Y. Chen, A. Liu, and G. Liu, “Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects,” J. Opt. Soc. Am. B 31(4), 889–897 (2014).
    [Crossref]
  23. L. Zhang and H. Zhong, “Modulation instability of finite energy Airy pulse in optical fiber,” Opt. Express 22(14), 17107–17115 (2014).
    [Crossref] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  25. R. H. Stolen and W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9(4), 565–573 (1992).
    [Crossref]
  26. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  27. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  28. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [Crossref] [PubMed]
  29. Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
    [Crossref]
  30. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  31. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
    [Crossref]
  32. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [Crossref] [PubMed]
  33. M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
    [Crossref]
  34. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5(6), 1301–1304 (1988).
    [Crossref]
  35. I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
    [Crossref] [PubMed]
  36. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5(11), 2374–2378 (1988).
    [Crossref]
  37. P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002).
    [Crossref] [PubMed]
  38. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref] [PubMed]
  39. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
    [Crossref] [PubMed]
  40. E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
    [Crossref]
  41. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26(11), 2064–2071 (2009).
    [Crossref]
  42. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27(9), 1894–1901 (2010).
    [Crossref]
  43. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
    [Crossref] [PubMed]

2014 (4)

2013 (4)

Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
[Crossref] [PubMed]

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013).
[Crossref] [PubMed]

2012 (1)

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

2011 (5)

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19(18), 17298–17307 (2011).
[Crossref] [PubMed]

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

2010 (4)

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
[Crossref] [PubMed]

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. De Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27(9), 1894–1901 (2010).
[Crossref]

2009 (1)

2008 (4)

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

2005 (1)

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

2004 (1)

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

2003 (2)

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

1998 (1)

1992 (1)

1988 (2)

1986 (2)

1980 (1)

1979 (2)

Abdollahpour, D.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Ament, C.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Bai, X.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Bandres, C. M. A.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Bang, O.

Belic, M.

Belic, M. R.

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Besieris, I. M.

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

Blow, K. J.

Broky, J.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Chai, L.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Chang, C. C.

Chen, H.

Chen, Y.

Chen, Z.

Chong, A.

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Christodoulides, D. N.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couairon, A.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Dai, X. Y.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

de Sterke, C. M.

De Sterke, M.

Dogariu, A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Doran, N. J.

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

Faccio, D.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Fan, D.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Fan, D. Y.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Fattal, Y.

Fujiura, K.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Goto, T.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Greenfield, E.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Guo, J.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Hu, M. L.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Hu, Y.

Jaskorzynska, B.

Judge, A. C.

Kaminer, I.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

Kato, M.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

Knight, J. C.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Kuhlmey, B. T.

Kurihara, T.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

Labruyére, A.

Lee, J. H.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Li, C.

Li, Y.

Li, Y. F.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Liu, A.

Liu, G.

Liu, X.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Lotti, A.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Lu, K.

Luan, F.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Lumer, Y.

Magi, E. C.

Mägi, E. C.

Malomed, B. A.

Marcuse, D.

Marom, D. M.

Mills, M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Mitschke, F. M.

Miyagi, M.

Mollenauer, L. F.

Moloney, J. V.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Morandotti, R.

Nakkeeran, K.

Nishida, S.

Nishizawa, N.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

Pant, R.

Papazoglou, D. G.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Polynkin, P.

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

Renninger, W.

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Rodríguez-Lara, B. M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Rudnick, A.

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Sardesai, H. P.

Schadt, D.

Segev, M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19(23), 23132–23139 (2011).
[Crossref] [PubMed]

Serebryannikov, E. E.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Shaarawi, A. M.

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

Siviloglou, G. A.

Skryabin, D. V.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Stolen, R. H.

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Tchofo Dinda, P.

Tomlinson, W. J.

Tzortzakis, S.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Uzunov, I. M.

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
[Crossref] [PubMed]

van Howe, J.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Voronin, A. A.

Wang, C. Y.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Wang, S.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Wang, Z.

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Weiner, A. M.

Wen, S. C.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Wise, F. W.

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Wood, D.

Wu, Z.

Xiang, Y. J.

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Xu, C.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Yulin, A. V.

Zeng, X.

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, Y.

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Zheng, H.

Zhong, H.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of Raman soliton,” Electron. Lett. 40(6), 381–382 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (1)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

J. Opt. Soc. Am. B (6)

JETP Lett. (1)

E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, “Enhanced soliton self-frequency shift of ultrashort light pulses,” JETP Lett. 81(10), 487–490 (2005).
[Crossref]

Nat. Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref] [PubMed]

Nat. Photon. (1)

A. Chong, W. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photon. 4(2), 103–106 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[Crossref] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38(14), 2499–2501 (2013).
[Crossref] [PubMed]

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
[Crossref] [PubMed]

P. Tchofo Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27(6), 382–384 (2002).
[Crossref] [PubMed]

C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of Airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
[Crossref] [PubMed]

Opt. Photon. News (1)

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[Crossref]

Phys. Rev. A (4)

S. Wang, D. Fan, X. Bai, and X. Zeng, “Propagation dynamics of Airy pulses in optical fibers with periodic dispersion modulation,” Phys. Rev. A 89(2), 023802 (2014).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84(2), 021807 (2011).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, and D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials,” Phys. Rev. A 84(3), 033815 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

I. M. Uzunov, “Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(6), 066603 (2010).
[Crossref] [PubMed]

I. M. Besieris and A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107(24), 243901 (2011).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Temporal and spectral evolutions of a FEAP with truncation coefficient a = 0.1 (a), (b) and Gaussian pulse (c), (d) in linear condition for N = 1 .
Fig. 2
Fig. 2 Temporal and spectral evolutions of the FEAP with a = 0.1 for different launched peak power ( N ) in the anomalous dispersion regime under the action of SPM and Raman effects ( T R = 0.1 ): (a) output pulse intensity and (e) spectral intensity at Z = 15 , and contour maps of the temporal and spectral evolution for (b), (f) N = 1.0 , (c), (g) N = 1.2 , and (d), (h) N = 1.4 .
Fig. 3
Fig. 3 Temporal and spectral evolutions of a self-accelerating FEAP with different truncation coefficients in the anomalous dispersion regime under the action of SPM ( N = 1.6 ) and Raman effects ( T R = 0.1 ): (a) output pulse and (e) spectral intensity at Z = 15 , and contour maps of the pulse and spectral evolutions for (b), (f) a = 0.05 , (c), (g) a = 0.10 , and (d), (h) a = 0.15 .
Fig. 4
Fig. 4 (a) Time and (b) frequency centroids of FEAP with different truncation coefficients as a function of propagation distance for N = 1.6.
Fig. 5
Fig. 5 Propagation of the FEAP with a = 0.1 , sech and Gaussian pulse in the anomalous GVD under the action of SPM ( N = 1.4 ), Raman ( T R = 0.1 ) effects: (a) output pulse intensity and (d) spectra at Z = 15 ; (b) T a c , (e) F a c , (c) I max and (f) TP of I max evolutions as a function of propagation distance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i Φ z = β 2 2 2 Φ t 2 γ ( | Φ | 2 Φ t R Φ | Φ | 2 t ) ,
T = t t 0 , Z = z l D , T R = t R t 0 , ψ = Φ Φ 0 , N = γ Φ 0 l D ,
i ψ Z = 1 2 2 ψ T 2 N 2 ( | ψ | 2 ψ T R ψ | ψ | 2 T ) .
ψ ( T , Z = 0 ) = ( a ) Ai ( T ) exp ( a T ) ,

Metrics