Abstract

We studied the azimuthal orientations of collagen fibers in histological slides of uterine cervical tissue by two different microscopy techniques, namely Mueller polarimetry (MP) and Second Harmonic Generation (SHG). SHG provides direct visualization of the fibers with high specificity, which orientations is then obtained by suitable image processing. MP provides images of retardation (among other polarimetric parameters) due to the optical anisotropy of the fibers, which is enhanced by Picrosirius Red staining. The fiber orientations are then assumed to be those of the retardation slow axes. The two methods, though fully different from each other, provide quite similar maps of average fiber orientations. Overall, our results confirm that MP microscopy provides reliable images of dominant fiber orientations at a much lower cost that SHG, which remains the “gold standard” for specific imaging of collagen fibers using optical microscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy

Ahmad Golaraei, Lukas Kontenis, Richard Cisek, Danielle Tokarz, Susan J. Done, Brian C. Wilson, and Virginijus Barzda
Biomed. Opt. Express 7(10) 4054-4068 (2016)

Collagen and myosin characterization by orientation field second harmonic microscopy

Christophe Odin, Thomas Guilbert, Alia Alkilani, Olena P. Boryskina, Vincent Fleury, and Yann Le Grand
Opt. Express 16(20) 16151-16165 (2008)

Second harmonic imaging and scoring of collagen in fibrotic tissues

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein
Opt. Express 15(7) 4054-4065 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D.J. Prockop and K.I. Kivirikko, “Collagens : molecular biology, diseases and potentials for therapy,” Ann. Rev. Biochem. 64, 403–434 (2007).
    [Crossref]
  2. S. Ricard-Blum and F. Ruggiero, “The collagen superfamily: from the extracellular matrix to the cell membrane,” Pathol. Biol. 53, 430–442 (2005).
    [Crossref] [PubMed]
  3. K.E. Kadler, C. Baldock, J. Bella, and R.P. Boot-Hanford, “Collagens at a glance,” J. Cell Science 120, 1995– 1998 (2007).
    [Crossref]
  4. F.O. Schmitt, C.E. Hall, and M.A. Jakus, “Electron microscope investigations of the structure of collagen,” J. Cell. Comp. Physiol 20, 11–33 (1942).
    [Crossref]
  5. K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).
  6. D.R. Baselt, J.P. Revel, and J.D. Baldschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 68, 2124–2128 (1993).
  7. L. Bozec and M. Horton, “Topography and mechanical properties of single molecules of type I collagen usign atomic force microscopy,” Biophys. J. 88, 4223–4231 (2005).
    [Crossref] [PubMed]
  8. B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
    [Crossref] [PubMed]
  9. T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
    [Crossref] [PubMed]
  10. J.B. Pawley, Handbook of Biological Confocal Microscopy (Springer Science and Business Media, 2006).
    [Crossref]
  11. A.G. Podoleanu, “Optical coherence tomography,” Brit. J. Radiol. 78, 976–988 (2005).
    [Crossref] [PubMed]
  12. I. Freund and M. Deustch, “Second harmonic microscopy of biological tissue,” Opt. Lett. 11, 94–96 (1986).
    [Crossref]
  13. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
    [Crossref]
  14. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
    [Crossref] [PubMed]
  15. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
    [Crossref] [PubMed]
  16. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
    [Crossref] [PubMed]
  17. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15, 4054–4065 (2007).
    [Crossref] [PubMed]
  18. L. C. Junqueira, G. Bignolas, and R.R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochem. J. 11, 447–455 (1979).
    [Crossref] [PubMed]
  19. V.S. Constantine and R.W. Mowry, “Selective staining of human dermal collagen. II. The use of Picrosirius red F3BA with polarization microscopy,” J. Invest. Dermatol. 50, 419–423 (1968).
    [PubMed]
  20. S. Huard, The Polarization of Light (Wiley, 1997).
  21. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
  22. S.L. Jacques, “Polarized Light Imaging of Biological Tissues,” in Handbook of Biomedical Optics, D. Boas and N. Ramanujam, eds. (CRC Press, 2011).
    [Crossref]
  23. N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications and outlook,” J. Biomed. Opt. 16, 110801 (2011).
    [Crossref]
  24. V.V. Tuchin, L. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
  25. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004).
    [Crossref] [PubMed]
  26. S.Y. Lu and R.A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [Crossref]
  27. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007).
    [Crossref] [PubMed]
  28. R. M. A. Azzam, ”Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4 × 4 matrix calculus,” J. Opt. Soc. Am. 68, 1756–1767 (1978).
    [Crossref]
  29. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
    [Crossref]
  30. S. Bancelin, C. Aimé, T. Coradin, and M.-C. Schanne-Klein, “In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy,” Biomed. Opt. Express 3, 1446–1454 (2012).
    [Crossref] [PubMed]
  31. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
    [Crossref]
  32. C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
    [Crossref] [PubMed]
  33. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
    [Crossref] [PubMed]
  34. H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
    [Crossref]
  35. T. Y. Lau, R. Ambekar, and K. C. Toussaint, “Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging,” Opt. Express 20, 21821–21832 (2012).
    [Crossref] [PubMed]
  36. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, 1982).

2012 (3)

2011 (1)

N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref]

2009 (2)

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17, 4868–4878 (2009).
[Crossref] [PubMed]

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

2007 (4)

2005 (3)

S. Ricard-Blum and F. Ruggiero, “The collagen superfamily: from the extracellular matrix to the cell membrane,” Pathol. Biol. 53, 430–442 (2005).
[Crossref] [PubMed]

L. Bozec and M. Horton, “Topography and mechanical properties of single molecules of type I collagen usign atomic force microscopy,” Biophys. J. 88, 4223–4231 (2005).
[Crossref] [PubMed]

A.G. Podoleanu, “Optical coherence tomography,” Brit. J. Radiol. 78, 976–988 (2005).
[Crossref] [PubMed]

2004 (4)

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[Crossref] [PubMed]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004).
[Crossref] [PubMed]

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[Crossref]

2003 (3)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

2002 (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

1996 (2)

K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).

S.Y. Lu and R.A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
[Crossref]

1993 (1)

D.R. Baselt, J.P. Revel, and J.D. Baldschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 68, 2124–2128 (1993).

1989 (1)

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

1986 (1)

1979 (1)

L. C. Junqueira, G. Bignolas, and R.R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochem. J. 11, 447–455 (1979).
[Crossref] [PubMed]

1978 (1)

1968 (1)

V.S. Constantine and R.W. Mowry, “Selective staining of human dermal collagen. II. The use of Picrosirius red F3BA with polarization microscopy,” J. Invest. Dermatol. 50, 419–423 (1968).
[PubMed]

1942 (1)

F.O. Schmitt, C.E. Hall, and M.A. Jakus, “Electron microscope investigations of the structure of collagen,” J. Cell. Comp. Physiol 20, 11–33 (1942).
[Crossref]

Aimé, C.

Albrecht, T.R.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Altendorf, H.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Ambekar, R.

Angelini, E.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Azzam, R. M. A.

Baldock, C.

K.E. Kadler, C. Baldock, J. Bella, and R.P. Boot-Hanford, “Collagens at a glance,” J. Cell Science 120, 1995– 1998 (2007).
[Crossref]

Baldschwieler, J.D.

D.R. Baselt, J.P. Revel, and J.D. Baldschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 68, 2124–2128 (1993).

Bancelin, S.

Baselt, D.R.

D.R. Baselt, J.P. Revel, and J.D. Baldschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 68, 2124–2128 (1993).

Bayan, C.

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

Beaurepaire, E.

Bella, J.

K.E. Kadler, C. Baldock, J. Bella, and R.P. Boot-Hanford, “Collagens at a glance,” J. Cell Science 120, 1995– 1998 (2007).
[Crossref]

Bignolas, G.

L. C. Junqueira, G. Bignolas, and R.R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochem. J. 11, 447–455 (1979).
[Crossref] [PubMed]

Boot-Hanford, R.P.

K.E. Kadler, C. Baldock, J. Bella, and R.P. Boot-Hanford, “Collagens at a glance,” J. Cell Science 120, 1995– 1998 (2007).
[Crossref]

Boucher, Y.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Bozec, L.

L. Bozec and M. Horton, “Topography and mechanical properties of single molecules of type I collagen usign atomic force microscopy,” Biophys. J. 88, 4223–4231 (2005).
[Crossref] [PubMed]

Brentani, R.R.

L. C. Junqueira, G. Bignolas, and R.R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochem. J. 11, 447–455 (1979).
[Crossref] [PubMed]

Brown, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

Cannell, D.S.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Chapman, J.A.

K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).

Chipman, R.A.

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

Cicchi, R.

Constantine, V.S.

V.S. Constantine and R.W. Mowry, “Selective staining of human dermal collagen. II. The use of Picrosirius red F3BA with polarization microscopy,” J. Invest. Dermatol. 50, 419–423 (1968).
[PubMed]

Coradin, T.

Danielsen, S.

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

De Martino, A.

Decencière, E.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Deniset-Besseau, A.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Deustch, M.

diTomaso, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Drake, B.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Drévillon, B.

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004).
[Crossref] [PubMed]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[Crossref]

Fanter, G.E.

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

Freund, I.

Garcia-Caurel, E.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[Crossref]

Georgakoudi, I.

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

Ghosh, N.

N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref]

Goldstein, D.

D. Goldstein, Polarized Light (Marcel Dekker, 2003).

Gould, S.A.C.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Gutsmann, T.

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

Guyot, S.

Hall, C.E.

F.O. Schmitt, C.E. Hall, and M.A. Jakus, “Electron microscope investigations of the structure of collagen,” J. Cell. Comp. Physiol 20, 11–33 (1942).
[Crossref]

Hansma, H.G.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Hansma, P.K.

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Hernest, M.

Holmes, D.F.

K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

Horton, M.

L. Bozec and M. Horton, “Topography and mechanical properties of single molecules of type I collagen usign atomic force microscopy,” Biophys. J. 88, 4223–4231 (2005).
[Crossref] [PubMed]

Huard, S.

S. Huard, The Polarization of Light (Wiley, 1997).

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

Jacques, S.L.

S.L. Jacques, “Polarized Light Imaging of Biological Tissues,” in Handbook of Biomedical Optics, D. Boas and N. Ramanujam, eds. (CRC Press, 2011).
[Crossref]

Jain, R. K.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Jakus, M.A.

F.O. Schmitt, C.E. Hall, and M.A. Jakus, “Electron microscope investigations of the structure of collagen,” J. Cell. Comp. Physiol 20, 11–33 (1942).
[Crossref]

Jeulin, D.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Junqueira, L. C.

L. C. Junqueira, G. Bignolas, and R.R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochem. J. 11, 447–455 (1979).
[Crossref] [PubMed]

Kadler, K.E.

K.E. Kadler, C. Baldock, J. Bella, and R.P. Boot-Hanford, “Collagens at a glance,” J. Cell Science 120, 1995– 1998 (2007).
[Crossref]

K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).

Kaplan, D.

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

Kapsokalyvas, D.

Kassab, G. S.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[Crossref] [PubMed]

Kindt, J.H.

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

Kivirikko, K.I.

D.J. Prockop and K.I. Kivirikko, “Collagens : molecular biology, diseases and potentials for therapy,” Ann. Rev. Biochem. 64, 403–434 (2007).
[Crossref]

Lau, T. Y.

Laude, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[Crossref]

Laude-Boulesteix, B.

Levitt, J. M.

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

Lu, S.Y.

Lu, X.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[Crossref] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

Martin, J.-L.

Matteini, P.

McKee, T.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

Miller, E.

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

Mosser, G.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Mowry, R.W.

V.S. Constantine and R.W. Mowry, “Selective staining of human dermal collagen. II. The use of Picrosirius red F3BA with polarization microscopy,” J. Invest. Dermatol. 50, 419–423 (1968).
[PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

Ossikovski, R.

Pavone, F. S.

Pawley, J.B.

J.B. Pawley, Handbook of Biological Confocal Microscopy (Springer Science and Business Media, 2006).
[Crossref]

Peixoto, P. D. S.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

Pena, A.-M.

Pini, R.

Pluen, A.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Podoleanu, A.G.

A.G. Podoleanu, “Optical coherence tomography,” Brit. J. Radiol. 78, 976–988 (2005).
[Crossref] [PubMed]

Prater, C.B.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Prockop, D.J.

D.J. Prockop and K.I. Kivirikko, “Collagens : molecular biology, diseases and potentials for therapy,” Ann. Rev. Biochem. 64, 403–434 (2007).
[Crossref]

Quate, C.F.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Ratto, F.

Revel, J.P.

D.R. Baselt, J.P. Revel, and J.D. Baldschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 68, 2124–2128 (1993).

Ricard-Blum, S.

S. Ricard-Blum and F. Ruggiero, “The collagen superfamily: from the extracellular matrix to the cell membrane,” Pathol. Biol. 53, 430–442 (2005).
[Crossref] [PubMed]

Rossi, F.

Ruggiero, F.

S. Ricard-Blum and F. Ruggiero, “The collagen superfamily: from the extracellular matrix to the cell membrane,” Pathol. Biol. 53, 430–442 (2005).
[Crossref] [PubMed]

Schanne-Klein, M.-C.

Schmitt, F.O.

F.O. Schmitt, C.E. Hall, and M.A. Jakus, “Electron microscope investigations of the structure of collagen,” J. Cell. Comp. Physiol 20, 11–33 (1942).
[Crossref]

Schwartz, L.

Seed, B.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Serra, J.

J. Serra, Image Analysis and Mathematical Morphology (Academic Press, 1982).

Stringari, C.

Strupler, M.

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

Tharaux, P.-L.

Toussaint, K. C.

Tromberg, B. J.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[Crossref] [PubMed]

Trotter, J.A.

K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).

Tuchin, V.V.

V.V. Tuchin, L. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

Venturoni, M.

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

Vitkin, I.A.

N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref]

Wang, L.

V.V. Tuchin, L. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Weisenhorn, A.L.

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Zimnyakov, D.A.

V.V. Tuchin, L. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Zoumi, A.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[Crossref] [PubMed]

Ann. Rev. Biochem. (1)

D.J. Prockop and K.I. Kivirikko, “Collagens : molecular biology, diseases and potentials for therapy,” Ann. Rev. Biochem. 64, 403–434 (2007).
[Crossref]

Appl. Opt. (1)

Biochem. J. (1)

K.E. Kadler, D.F. Holmes, J.A. Trotter, and J.A. Chapman, “Collagen fibril formation,” Biochem. J. 317, 1–11 (1996).

Biomed. Opt. Express (1)

Biophys. J. (5)

D.R. Baselt, J.P. Revel, and J.D. Baldschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 68, 2124–2128 (1993).

L. Bozec and M. Horton, “Topography and mechanical properties of single molecules of type I collagen usign atomic force microscopy,” Biophys. J. 88, 4223–4231 (2005).
[Crossref] [PubMed]

T. Gutsmann, G.E. Fanter, J.H. Kindt, M. Venturoni, S. Danielsen, and P.K. Hansma, “Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization,” Biophys. J. 86, 3186–3193 (2004).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002).
[Crossref]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, ”Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[Crossref] [PubMed]

Brit. J. Radiol. (1)

A.G. Podoleanu, “Optical coherence tomography,” Brit. J. Radiol. 78, 976–988 (2005).
[Crossref] [PubMed]

Histochem. J. (1)

L. C. Junqueira, G. Bignolas, and R.R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochem. J. 11, 447–455 (1979).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys. 105, 102042 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref]

J. Cell Science (1)

K.E. Kadler, C. Baldock, J. Bella, and R.P. Boot-Hanford, “Collagens at a glance,” J. Cell Science 120, 1995– 1998 (2007).
[Crossref]

J. Cell. Comp. Physiol (1)

F.O. Schmitt, C.E. Hall, and M.A. Jakus, “Electron microscope investigations of the structure of collagen,” J. Cell. Comp. Physiol 20, 11–33 (1942).
[Crossref]

J. Invest. Dermatol. (1)

V.S. Constantine and R.W. Mowry, “Selective staining of human dermal collagen. II. The use of Picrosirius red F3BA with polarization microscopy,” J. Invest. Dermatol. 50, 419–423 (1968).
[PubMed]

J. Microscopy (1)

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser, and M.-C. Schanne-Klein, “Imaging and 3D Morphological Analysis of Collagen Fibrils,” J. Microscopy 247, 161–175 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Biotech. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Nat. Med. (1)

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Pathol. Biol. (1)

S. Ricard-Blum and F. Ruggiero, “The collagen superfamily: from the extracellular matrix to the cell membrane,” Pathol. Biol. 53, 430–442 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[Crossref] [PubMed]

Science (1)

B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma, “Imaging crystals, polymers, and processes in water with the atomic force microscope,” Science 243, 1586–1589 (1989).
[Crossref] [PubMed]

Thin Solid Films (1)

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[Crossref]

Other (6)

J. Serra, Image Analysis and Mathematical Morphology (Academic Press, 1982).

V.V. Tuchin, L. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

S. Huard, The Polarization of Light (Wiley, 1997).

D. Goldstein, Polarized Light (Marcel Dekker, 2003).

S.L. Jacques, “Polarized Light Imaging of Biological Tissues,” in Handbook of Biomedical Optics, D. Boas and N. Ramanujam, eds. (CRC Press, 2011).
[Crossref]

J.B. Pawley, Handbook of Biological Confocal Microscopy (Springer Science and Business Media, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a): SHG microscopy and (b): MP microscopy setups. 2PEF images are also acquired in the backward direction on SHG microscope.
Fig. 2
Fig. 2 A typical Mueller image of a histological slide of cervical tissue stained with picrosirius Red. All elements but m11 are normalized by m11 and shown with the color scale at the rigth of the image, between −0.2 and 0.2. The diagonal elements, which are not relevant for the orientation analysis, are off-scale. Image diameter: 680 μm.
Fig. 3
Fig. 3 (a): histogram of a typical element m 24 * of the normalized Mueller matrix M 0 * measured on a blank slide, (b): histogram of the scalar retardation R derived from M 0 * using Eq. (12), (c): histogram of the scalar retardation derived from the matrix shown in Fig. 2.
Fig. 4
Fig. 4 (a): scalar retardation image calculated from the Mueller image shown in Fig 2. (b): Azimuth α of the slow axis, counted counterclockwise from the horizontal axis x, displayed on the 0°–180° RGBR color scale at the right of the figure. Image diameter: 680 μm.
Fig. 5
Fig. 5 SHG image processing procedure. (a): z-projection of the SHG image stack taken at various depths in the sample. (b): Enhanced SHG image after filtering. The inset shows the rotatable line used to determine the fiber azimuthal orientation at each pixel by optimizing its alignment with the fiber direction. (c): Resulting fiber azimuthal orientations displayed on the same RGBR scale as in Fig. 4. Scale bar: 100 μm.
Fig. 6
Fig. 6 Comparison of MP (left) and SHG (right) images of the same ROI of a typical sample. (a): Unpolarized transmission image at 550 nm, (b): raw SHG image. (c): Azimuthal orientations of the slow axis from MP (d): analogous to (c), from SHG. (e): orientation histogram from MP, (f): analogous to (e), from SHG. Scale bars: 100μm.
Fig. 7
Fig. 7 Comparison of the main azimuthal orientation obtained by the two techniques on 12 ROIs from 2 different samples. (a): Correlation of the peak values, and corresponding linear fit. (b): histogram of the ratio of the widths (FWHM) of the azimuth distributions obtained by the two techniques.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S out = M . S in = [ m i j ] i , j = 1 : 4 . S in
S = [ I I x I y I + 45 I 45 I L C I R C ] = [ I Q U V ]
ρ = Q 2 + U 2 + V 2 I
D = T max T min T max + T min
M D ( D , θ D ) = m 11 [ 1 Dc Ds 0 Dc c 2 + s 2 1 D 2 s c ( 1 1 D 2 ) 0 Ds s c ( 1 1 D 2 ) s 2 + c 2 1 D 2 0 0 0 1 D 2 ]
M R ( D , θ R ) = m 11 [ 1 0 0 0 0 c 2 + s 2 cos R s c ( 1 cos R ) s sin R 0 s c ( 1 cos R ) s 2 + c 2 cos R c sin R 0 s sin R c sin R cos R ]
M Δ ( a , b ) ) = m 11 [ 1 0 0 0 0 a 0 0 0 0 a 0 0 0 0 b ]
M = M Δ M R M D
M D ( D < < 1 , θ D ) m 11 [ 1 Dc Ds 0 Dc 1 0 0 Ds 0 1 0 0 0 0 1 ]
M R ( R < < 1 , θ R ) m 11 [ 1 0 0 0 0 1 0 s sin R 0 0 1 c sin R 0 s sin R c sin R cos R ]
M = m 11 [ 1 D cos 2 θ D D sin 2 θ D 0 D cos 2 θ D 1 ε l 0 R sin 2 θ R D sin 2 θ D 0 1 ε l R cos 2 θ R 0 R sin 2 θ R R cos 2 θ R 1 ε c ]
R = ( m 24 2 + m 34 2 )

Metrics