Abstract

As a new approach for rapid generation of holographic videos, a so-called compressed novel-look-up-table(C-NLUT), which is composed of only two principal fringe patterns (PFPs) of baseline and depth-compensating PFPs (B-PFP, DC-PFP), is proposed. Here, the hologram pattern for a 3-D video frame are generated by calculating the fringe patterns for all depth layers only by using the B-PFP, and then transforming them into those for their depth layers by being multiplied with corresponding DC-PFPs. With this one-step calculation process, the computational speed (CS) of the proposed method can be greatly enhanced. Experimental results show that the CS of the proposed method has been improved by 30.2% on the average compared to that of the conventional method. Furthermore, the average calculation time of a new hybrid MC/C-NLUT method, in which both of motion-compensation (MC) and one-step calculation schemes are employed, has been reduced by 99.7%, 65.4%, 60.2% and 30.2%, respectively compared to each of the conventional ray-tracing, LUT, NLUT, and MC-NLUT methods. In addition, the memory size of the proposed method has been also reduced by 82 × 106-fold and 128-fold compared to those of the conventional LUT and NLUT methods, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table

Seung-Cheol Kim, Xiao-Bin Dong, Min-Woo Kwon, and Eun-Soo Kim
Opt. Express 21(9) 11568-11584 (2013)

Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes

M.-W. Kwon, S.-C. Kim, S.-E. Yoon, Y.-S. Ho, and E.-S. Kim
Opt. Express 23(3) 2101-2120 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley & Sons, 2002).
  2. T.-C. Poon, Digital Holography and Three-dimensional Display (Springer Verlag, 2007).
  3. K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
    [Crossref]
  4. R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
    [Crossref]
  5. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  6. Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17(21), 18543–18555 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-21-18543 .
    [Crossref] [PubMed]
  7. H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.
  8. H. Yoshikawa, S. Iwase, and T. Oneda, “Fast Computation of Fresnel Holograms employing Difference,” Proc. SPIE 3956, 48–55 (2000).
    [Crossref]
  9. K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39(35), 6587–6594 (2000).
    [Crossref] [PubMed]
  10. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  11. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9192 .
    [Crossref] [PubMed]
  12. T. Tommasi and B. Bianco, “Frequency analysis of light diffraction between rotated planes,” Opt. Lett. 17(8), 556–558 (1992).
    [Crossref] [PubMed]
  13. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15(4), 857–867 (1998).
    [Crossref]
  14. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20(9), 1755–1762 (2003).
    [Crossref] [PubMed]
  15. H. Sakata and Y. Sakamoto, “Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space,” Appl. Opt. 48(34), H212–H221 (2009).
    [Crossref] [PubMed]
  16. K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Opt. Express 20(12), 12949–12958 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-12-12949 .
    [Crossref] [PubMed]
  17. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3-D objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
    [Crossref] [PubMed]
  18. S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-11-12021 .
    [Crossref] [PubMed]
  19. D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
    [Crossref]
  20. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques,” Appl. Opt. 47, 5986–5995 (2008).
    [Crossref] [PubMed]
  21. S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-21-9-11568 .
    [Crossref] [PubMed]
  22. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22, 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-22-7-8047 .
    [Crossref] [PubMed]
  23. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16925 .
    [Crossref] [PubMed]
  24. S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
    [Crossref]
  25. S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
    [Crossref]
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2nd edition, 2007).
  27. O. Stankiewicz, K. Wegner, and M. Domański, “Nonlinear depth representation for 3D video coding,” IEEE The International Conference on Image Processing (ICIP, 2013), pp. 1752–1756.
    [Crossref]
  28. P. Aflaki, M. M. Hannuksela, D. Rusanovskyy, and M. Gabbouj, “Nonlinear depth map resampling for depth-enhanced 3-D video coding,” IEEE Signal Process. Lett. 20(1), 87–90 (2013).
    [Crossref]
  29. I. Feldmann, O. Schreer, and P. Kauff, Proceedings of 4th Workshop on Digital Media Processing for Multimedia Interactive Services, E. Izquierdo (ed.), World Scientific, 2003, pp. 433–438.
  30. M. Domański, T. Grajek, D. Karwowski, K. Klimaszewski, J. Konieczny, M. Kurc, A. Łuczak, R. Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski, and K. Wegner, “Technical Description of Poznan University of Technology proposal for Call on 3D Video Coding Technology,” ISO/IEC JTC1/SC29/WG11, Doc. M22697, Geneva, CH, Nov. 2011.
  31. W. J. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42(6), 1560–1571 (2003).
    [Crossref]
  32. R. Patterson, “Spatio-temporal properties of stereoacuity,” Optom. Vis. Sci. 67(2), 123–128 (1990).
    [Crossref] [PubMed]
  33. R. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–872 (2007).
    [Crossref]

2014 (3)

2013 (4)

2012 (2)

2011 (2)

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[Crossref]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[Crossref]

2009 (3)

2008 (3)

2007 (1)

R. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–872 (2007).
[Crossref]

2003 (2)

2000 (2)

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast Computation of Fresnel Holograms employing Difference,” Proc. SPIE 3956, 48–55 (2000).
[Crossref]

K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39(35), 6587–6594 (2000).
[Crossref] [PubMed]

1998 (1)

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

1992 (1)

1990 (1)

R. Patterson, “Spatio-temporal properties of stereoacuity,” Optom. Vis. Sci. 67(2), 123–128 (1990).
[Crossref] [PubMed]

Aflaki, P.

P. Aflaki, M. M. Hannuksela, D. Rusanovskyy, and M. Gabbouj, “Nonlinear depth map resampling for depth-enhanced 3-D video coding,” IEEE Signal Process. Lett. 20(1), 87–90 (2013).
[Crossref]

Bianco, B.

Choe, W.-Y.

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[Crossref]

Chong, T.

Delen, N.

Dong, X.-B.

Gabbouj, M.

P. Aflaki, M. M. Hannuksela, D. Rusanovskyy, and M. Gabbouj, “Nonlinear depth map resampling for depth-enhanced 3-D video coding,” IEEE Signal Process. Lett. 20(1), 87–90 (2013).
[Crossref]

Hannuksela, M. M.

P. Aflaki, M. M. Hannuksela, D. Rusanovskyy, and M. Gabbouj, “Nonlinear depth map resampling for depth-enhanced 3-D video coding,” IEEE Signal Process. Lett. 20(1), 87–90 (2013).
[Crossref]

Hooker, B.

Ichihashi, Y.

Ito, T.

Iwase, S.

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast Computation of Fresnel Holograms employing Difference,” Proc. SPIE 3956, 48–55 (2000).
[Crossref]

Kakue, T.

Kim, E.-S.

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16925 .
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22, 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-22-7-8047 .
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-21-9-11568 .
[Crossref] [PubMed]

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[Crossref]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-11-12021 .
[Crossref] [PubMed]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[Crossref]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[Crossref]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3-D objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[Crossref] [PubMed]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques,” Appl. Opt. 47, 5986–5995 (2008).
[Crossref] [PubMed]

Kim, J.-M.

Kim, S.-C.

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22, 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-22-7-8047 .
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16925 .
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-21-9-11568 .
[Crossref] [PubMed]

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[Crossref]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-11-12021 .
[Crossref] [PubMed]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[Crossref]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[Crossref]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3-D objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[Crossref] [PubMed]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques,” Appl. Opt. 47, 5986–5995 (2008).
[Crossref] [PubMed]

Kurita, T.

Kwon, D.-W.

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[Crossref]

Kwon, M.-W.

Liang, X.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Masuda, N.

Matsushima, K.

Murano, K.

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

Na, K.-D.

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[Crossref]

Oi, R.

Oikawa, M.

Okada, N.

Okui, M.

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[Crossref]

Oneda, T.

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast Computation of Fresnel Holograms employing Difference,” Proc. SPIE 3956, 48–55 (2000).
[Crossref]

Pan, Y.

Patterson, R.

R. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–872 (2007).
[Crossref]

R. Patterson, “Spatio-temporal properties of stereoacuity,” Optom. Vis. Sci. 67(2), 123–128 (1990).
[Crossref] [PubMed]

Plesniak, W. J.

W. J. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42(6), 1560–1571 (2003).
[Crossref]

Rusanovskyy, D.

P. Aflaki, M. M. Hannuksela, D. Rusanovskyy, and M. Gabbouj, “Nonlinear depth map resampling for depth-enhanced 3-D video coding,” IEEE Signal Process. Lett. 20(1), 87–90 (2013).
[Crossref]

Sakamoto, Y.

Sakata, H.

Schimmel, H.

Senoh, T.

Shimobaba, T.

Solanki, S.

Sugiyama, A.

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

Takada, N.

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

Takai, M.

Tan, C.

Tanjung, R.

Tommasi, T.

Wyrowski, F.

Xu, X.

Yamamoto, K.

Yoon, J.-H.

Yoshikawa, H.

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast Computation of Fresnel Holograms employing Difference,” Proc. SPIE 3956, 48–55 (2000).
[Crossref]

Appl. Opt. (4)

Comput. Phys. Commun. (1)

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

IEEE Signal Process. Lett. (1)

P. Aflaki, M. M. Hannuksela, D. Rusanovskyy, and M. Gabbouj, “Nonlinear depth map resampling for depth-enhanced 3-D video coding,” IEEE Signal Process. Lett. 20(1), 87–90 (2013).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

R. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–872 (2007).
[Crossref]

Opt. Eng. (2)

W. J. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42(6), 1560–1571 (2003).
[Crossref]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[Crossref]

Opt. Express (7)

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-11-12021 .
[Crossref] [PubMed]

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Opt. Express 20(12), 12949–12958 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-12-12949 .
[Crossref] [PubMed]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9192 .
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-21-9-11568 .
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22, 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-22-7-8047 .
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-14-16925 .
[Crossref] [PubMed]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17(21), 18543–18555 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-21-18543 .
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[Crossref]

Opt. Lett. (2)

Optom. Vis. Sci. (1)

R. Patterson, “Spatio-temporal properties of stereoacuity,” Optom. Vis. Sci. 67(2), 123–128 (1990).
[Crossref] [PubMed]

Proc. SPIE (3)

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast Computation of Fresnel Holograms employing Difference,” Proc. SPIE 3956, 48–55 (2000).
[Crossref]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[Crossref]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[Crossref]

Other (7)

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley & Sons, 2002).

T.-C. Poon, Digital Holography and Three-dimensional Display (Springer Verlag, 2007).

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

I. Feldmann, O. Schreer, and P. Kauff, Proceedings of 4th Workshop on Digital Media Processing for Multimedia Interactive Services, E. Izquierdo (ed.), World Scientific, 2003, pp. 433–438.

M. Domański, T. Grajek, D. Karwowski, K. Klimaszewski, J. Konieczny, M. Kurc, A. Łuczak, R. Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski, and K. Wegner, “Technical Description of Poznan University of Technology proposal for Call on 3D Video Coding Technology,” ISO/IEC JTC1/SC29/WG11, Doc. M22697, Geneva, CH, Nov. 2011.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2nd edition, 2007).

O. Stankiewicz, K. Wegner, and M. Domański, “Nonlinear depth representation for 3D video coding,” IEEE The International Conference on Image Processing (ICIP, 2013), pp. 1752–1756.
[Crossref]

Supplementary Material (5)

» Media 1: AVI (1859 KB)     
» Media 2: AVI (1413 KB)     
» Media 3: AVI (1456 KB)     
» Media 4: AVI (2917 KB)     
» Media 5: AVI (3131 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) A geometric structure for generating the Fresnel hologram and a PFP for the reference object point on the qth depth layer, (b) A CGH generation process for two object points on the depth layer of z1 with the PFP
Fig. 2
Fig. 2 A schematic for showing a shift-invariance property of the NLUT.
Fig. 3
Fig. 3 Conceptual diagram for showing a thin-lens property of the PFP: (a) PFP A with the focal length of za, (b) PFP B with the focal length of zb, (c) PFP C with the focal length of zc generated by multiplying PFP A and PFP B.
Fig. 4
Fig. 4 Overall block-diagram of the proposed method to generate video holograms of a 3-D scene by combined use of B-PFP and DC-PFP (PF: previous frame, CF: current frame).
Fig. 5
Fig. 5 (a) Geometry of stereopsis, (b) Focusing and perceived distances depending on the depth values of Eqs. (11) and (16)
Fig. 6
Fig. 6 Intensity and depth images: (a) Intensity image, (b) Depth image quantized with the uniform step, (c) Depth image quantized with non-uniform steps.
Fig. 7
Fig. 7 Conceptual diagram of the proposed method: (a) Image space and hologram patterns for the zn plane generated with TB, (b) Depth-compensation between zB and zn planes with the DC-PFP, (c) Depth-compensation between video frames with the DC-PFP.
Fig. 8
Fig. 8 Intensity (Media 1) and depth (Media 2) images: (a) 1st frame, (b) 15th frame, (c) 30th frame, (d) 45th frame, (e) 60th frame.
Fig. 9
Fig. 9 Difference images (Media 3) between two consecutive video frames obtained with (a) 1st frame, (b) 14th and 15th frame, (c) 29th and 30th frame, (d) 44th and 45th frame, (e) 59th and 60th frame.
Fig. 10
Fig. 10 Reconstructed 3-D images at each distance of 575 mm (Media 4) and 590 mm (Media 5): (a) 1st frame, (b) 15th frame, (c) 30th frame, (d) 45th frame, (e) 60th frame.
Fig. 11
Fig. 11 Comparison results of the (a) numbers of calculated object points and (b) calculation times for one object point for each case of the conventional and proposed methods.

Tables (1)

Tables Icon

Table 1 Average numbers of calculated object points, calculation times for one object point and memory capacities estimated for each of the conventional and proposed methods

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

T q ( x , y ) exp [ j k 2 z q { ( x x 0 ) 2 + ( y y 0 ) 2 } ]
I ( x , y ) = q = 1 Q p = 1 P a p T q ( x x p , y y p )
T A ( x , y ) exp [ j k 2 z a { ( x x 0 ) 2 + ( y y 0 ) 2 } ]
T B ( x , y ) exp [ j k 2 z b { ( x x 0 ) 2 + ( y y 0 ) 2 } ]
T C ( x , y ) T A ( x , y ) T B ( x , y ) = exp [ j k 2 z c { ( x x 0 ) 2 + ( y y 0 ) 2 } ]
1 / z c = 1 / z a + 1 / z b
[ 1 0 1 / z 2 1 ] = [ 1 0 1 / z 1 1 ] [ 1 0 1 / Δ z a 1 ] = [ 1 0 ( 1 / z 1 + 1 / Δ z a ) 1 ]
1 / z 2 = 1 / z 1 + 1 / Δ z a
T 2 = T B × T D C = exp [ j k 2 z B { ( x x 0 ) 2 + ( y y 0 ) 2 } ] exp [ j k 2 Δ z D C { ( x x 0 ) 2 + ( y y 0 ) 2 } ] = exp [ j k ( 1 2 z B + 1 2 Δ z D C ) { ( x x 0 ) 2 + ( y y 0 ) 2 } ] = exp [ j k 1 2 z 2 { ( x x 0 ) 2 + ( y y 0 ) 2 } ]
T n = T B × T D C n 1
1 / z n = 1 / z B + ( n 1 ) / Δ z D C
T n = T B × T D C n = T B × T D C n 1 × T D C = T n 1 × T D C
D = r o u n d [ 255 ( 1 z 1 z max ) / ( 1 z min 1 z max ) ]
E = ( D D max ) a E max
Δ z = d 2 tan { θ + arc tan ( 2 z d ) } z
z n = z n 1 + Δ z
I ( x , y ) = z = 1 N p = 1 M z a p T z ( x x p , y y p ) = z = 1 N I z ( x , y )
I n = p = 1 M n a p T n = p = 1 M n a p ( T B × T D C n ) = T D C n p = 1 M n a p T B = I B n × T D C n
I o = I n × T D C o n
I A = a 1 × T 1
I B = a 2 × T 1 = a 2 a 1 × a 1 × T 1 = a 2 a 1 × I A
I C = a 1 × T 1 × T D C = I A × T D C
I D = a 2 × T 2 = ( a 2 a 1 ) × a 1 × T 1 × T D C = ( a 2 a 1 ) × I A × T D C

Metrics