Abstract

We propose a novel guard-band-shared direct-detection (GBS-DD) scheme to improve the receiver spectrum efficiency (SE). The 100-Gb/s signal is modulated by 2 sub-bands, which are assigned onto two orthogonal polarizations. The central wavelengths of the two sub-bands are set as 10.84-GHz frequency space. The two sub-bands are then received simultaneously using a single conventional photodiode (PD) of 40-GHz bandwidth. Only one optical pilot carrier is inserted to beat with the 2 sub-bands on the two polarizations. When the 2 sub-band signal entering into the receiver, the signal-to-signal beat interference (SSBI) terms fall and overlap in the same guard band. As a consequence, the bandwidth usage of the PD is enhanced from 1/2 to 2/3. The 100-Gb/s signal is modulated using orthogonal frequency-division multiplexing based on offset quadrature-amplitude-modulation of 64-quadrature amplitude modulation (OFDM/OQAM-64QAM), and transmitted over 80-km standard single mode fiber (SSMF) within a 50-GHz optical grid. It is shown that the proposed GBS-DD scheme can be implemented by the current commercial optical/electrical devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode

Xuebing Zhang, Zhaohui Li, Chao Li, Ming Luo, Haibo Li, Cai Li, Qi Yang, and Shaohua Yu
Opt. Express 22(10) 12079-12086 (2014)

100.29-Gb/s direct detection optical OFDM/OQAM 32-QAM signal over 880  km SSMF transmission using a single photodiode

Chao Li, Qi Yang, Ming Luo, Zhixue He, Haibo Li, Rong Hu, and Shaohua Yu
Opt. Lett. 40(7) 1185-1188 (2015)

Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems

Jian Zhao and Chun-Kit Chan
Opt. Express 25(18) 21603-21618 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [Crossref]
  2. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands,” J. Lightwave Technol. 30(10), 1540–1548 (2012).
    [Crossref]
  3. S. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. B. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata and Y. Aoki, “40× 117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation.” in OFC'2012, paper PDP5C.4 (2012).
  4. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s Optical IM-DD Transmission with 10G-Class Devices Enabled by 65 GSamples/s CMOS DAC Core.” in OFC'2013, paper OM3H.1 (2013).
  5. B. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
    [Crossref]
  6. X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “High-speed Fading-free Direct Detection for Double Sideband OFDM Signal via Block-wise Phase Switching.” in OFC'2013, PDP5B.7 (2013)
  7. X. Chen, D. Che, A. Li, J. He, and W. Shieh, “Signal-carrier interleaved optical OFDM for direct detection optical communication,” Opt. Express 21(26), 32501–32507 (2013).
    [Crossref] [PubMed]
  8. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes Vector Direct Detection for Short Reach Optical Communication.” in OFC'2014, PDP Th5C.7 (2014).
  9. L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. Meyer Anderson and Y. Leblebici, “A 90GS/s 8b 667mW 64x Interleaved SAR ADC in 32nm Digital SOI CMOS.” ISSCC, No. EPFL-CONF-190728 (2013).
  10. X. Zhang, Z. Li, C. Li, M. Luo, H. Li, C. Li, Q. Yang, and S. Yu, “Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode,” Opt. Express 22(10), 12079–12086 (2014).
    [Crossref] [PubMed]
  11. Z. Li, T. Jiang, H. Li, and X. Zhang, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
    [Crossref] [PubMed]
  12. W. R. Peng, X. X. Wu, V. R. Arbab, K. M. Feng, B. Shamee, L. C. Christen, J. Y. Yang, A. E. Willner, and S. Chi, “Theoretical and Experimental Investigations of Direct-Detected RF-Tone-Assisted Optical OFDM Systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [Crossref]
  13. S. Pierre, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
    [Crossref]
  14. C. Li, X. Zhang, H. Li, C. Li, M. Luo, Z. Li, J. Xu, Q. Yang, and S. Yu, “Experimental Demonstration of 429.96-Gb/s OFDM /OQAM-64QAM over 400-km SSMF Transmission within a 50-GHz Grid .” in the processing of IEEE Photon. J. for publication (2014).
    [Crossref]
  15. W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of High-Speed (>100Gb/s) Direct-Detection Optical OFDM Superchannel,” J. Lightwave Technol. 30(12), 733–8724 (2012).
    [Crossref]

2014 (1)

2013 (2)

2012 (2)

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands,” J. Lightwave Technol. 30(10), 1540–1548 (2012).
[Crossref]

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of High-Speed (>100Gb/s) Direct-Detection Optical OFDM Superchannel,” J. Lightwave Technol. 30(12), 733–8724 (2012).
[Crossref]

2010 (1)

2009 (1)

2006 (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

2002 (1)

S. Pierre, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[Crossref]

Arbab, V. R.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

Che, D.

Chen, X.

Chi, S.

Christen, L. C.

Du, L. B.

Feng, K. M.

He, J.

Hu, J.

Huang, M.

Huang, Y.

Ip, E.

Jiang, T.

Lacaille, N.

S. Pierre, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[Crossref]

Li, A.

Li, C.

Li, H.

Li, Z.

Lowery, A. J.

Luo, M.

Morita, I.

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of High-Speed (>100Gb/s) Direct-Detection Optical OFDM Superchannel,” J. Lightwave Technol. 30(12), 733–8724 (2012).
[Crossref]

Peng, W. R.

Pierre, S.

S. Pierre, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[Crossref]

Qian, D.

Schmidt, B.

Shamee, B.

Shao, Y.

Shieh, W.

Siclet, C.

S. Pierre, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[Crossref]

Takahashi, H.

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of High-Speed (>100Gb/s) Direct-Detection Optical OFDM Superchannel,” J. Lightwave Technol. 30(12), 733–8724 (2012).
[Crossref]

Tsuritani, T.

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of High-Speed (>100Gb/s) Direct-Detection Optical OFDM Superchannel,” J. Lightwave Technol. 30(12), 733–8724 (2012).
[Crossref]

Wang, T.

Willner, A. E.

Wu, X. X.

Yang, J. Y.

Yang, Q.

Yu, S.

Zan, Z.

Zhang, X.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

IEEE Trans. Signal Process. (1)

S. Pierre, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (3)

Other (6)

C. Li, X. Zhang, H. Li, C. Li, M. Luo, Z. Li, J. Xu, Q. Yang, and S. Yu, “Experimental Demonstration of 429.96-Gb/s OFDM /OQAM-64QAM over 400-km SSMF Transmission within a 50-GHz Grid .” in the processing of IEEE Photon. J. for publication (2014).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes Vector Direct Detection for Short Reach Optical Communication.” in OFC'2014, PDP Th5C.7 (2014).

L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. Meyer Anderson and Y. Leblebici, “A 90GS/s 8b 667mW 64x Interleaved SAR ADC in 32nm Digital SOI CMOS.” ISSCC, No. EPFL-CONF-190728 (2013).

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “High-speed Fading-free Direct Detection for Double Sideband OFDM Signal via Block-wise Phase Switching.” in OFC'2013, PDP5B.7 (2013)

S. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. B. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata and Y. Aoki, “40× 117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation.” in OFC'2012, paper PDP5C.4 (2012).

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s Optical IM-DD Transmission with 10G-Class Devices Enabled by 65 GSamples/s CMOS DAC Core.” in OFC'2013, paper OM3H.1 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Proposed guard-band-shared direct-detection scheme.
Fig. 2
Fig. 2 Experimental setup of 100-Gb/s GBS-DD OFDM/OQAM-64QAM system. (a) Optical spectrum of the 2 sub-bands and pilot carrier together at the transmitter; (b) Electrical spectrum of the 100-Gb/s 2 sub-bands signal at the receiver. ECL: external-cavity laser; AWG: arbitrary waveform generator; VOA: variable optical attenuator; PMOC: polarization maintaining optical coupler; PBS/PBC: polarization beam splitter/combiner; PD: photodiode.
Fig. 3
Fig. 3 (a) electrical spectrum of conventional OFDM for the entire 2 sub-bands; (b) electrical spectrum of OFDM/OQAM for the entire 2 sub-bands; (c) electrical signal to noise ratio versus signal subcarriers for the 1st band; (d) electrical signal to noise ratio versus signal subcarriers for the 2nd band.
Fig. 4
Fig. 4 Received power versus BER for 100 Gb/s OFDM/OQAM and conventional OFDM at back-to-back.
Fig. 5
Fig. 5 BER versus CSPR at back-to-back.
Fig. 6
Fig. 6 BER versus launch power for entire 2 sub-bands over 80-km SSMF with various CSPR values.
Fig. 7
Fig. 7 Constellations of the recovered OFDM/OQAM-64QAM signals at back-to-back and over 80-km SSMF.
Fig. 8
Fig. 8 BER versus transmission distance; (a) 83.48 Gb/s OFDM/OQAM-32QAM; (b) 66.78 Gb/s OFDM/OQAM-16QAM.

Tables (1)

Tables Icon

Tab. 1 BER performance for each sub-band at back-to-back and over 80-km

Metrics