Abstract

The modulation transfer function (MTF) of radiographic systems is frequently evaluated by the system’s line spread function (LSF) using narrow slits. The conventional slit method requires LSF tail approximation, which is achieved by exponentially extrapolating the LSF tails beyond 1% of peak value. However, the estimated MTF at low frequencies from extrapolation may not reflect the true performance of the system. In this study, a monotone spline regression technique for LSF tail approximation is developed to improve the accuracy of MTF estimation at low frequencies. This technique is based on the underlying physical principles of the system response. The advantages of this technique are demonstrated with simulated examples of which the true MTFs are known. The application of this measurement technique is also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data

Edouard Huard, Sophie Derelle, Julien Jaeck, Jean Nghiem, Riad Haïdar, and Jérôme Primot
Opt. Express 26(5) 5200-5211 (2018)

MTF Maximization at Low Spatial Frequencies

A. Offner
Appl. Opt. 8(12) 2545-2547 (1969)

Radiographic screen–film noise power spectrum: variation with microdensitometer slit length

John M. Sandrik and Robert F. Wagner
Appl. Opt. 20(16) 2795-2798 (1981)

References

  • View by:
  • |
  • |
  • |

  1. J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
    [Crossref] [PubMed]
  2. H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
    [Crossref] [PubMed]
  3. E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
    [Crossref] [PubMed]
  4. N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
    [Crossref] [PubMed]
  5. I. A. Cunningham and B. K. Reid, “Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques,” Med. Phys. 19(4), 1037–1044 (1992).
    [Crossref] [PubMed]
  6. E. Buhr, S. Gunther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled MTF of a digital radiographic system from an edge image,” Med. Phys. 30, 2323–2331 (2003).
    [Crossref] [PubMed]
  7. J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys. 39(10), 6149–6160 (2012).
    [Crossref] [PubMed]
  8. E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
    [Crossref] [PubMed]
  9. J. T. Dobbins III, “Image Quality Metrics for Digital Systems,” in Handbook of Medical Imaging, Vol. 1. Physics and Psychophysics, J. Beutel, H. L. Kundel and R. L. Van Metter, ed. (SPIE, Bellingham, WA, 2000).
  10. IEC publication, “Medical electrical equipment—Characteristics of digital x-ray imaging devices - Part 1: Determination of the detective quantum efficiency,” IEC 62220–1, Geneva, Switzerland, 2003.
  11. E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
    [Crossref] [PubMed]
  12. K. Doi, K. Strubler, and K. Rossmann, “Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function,” Phys. Med. Biol. 17(2), 241–250 (1972).
    [Crossref] [PubMed]
  13. B. W. Silverman, “A fast and efficient cross-validation method for smoothing parameter choice in spline regression,” J. Am. Stat. Assoc. 79(387), 584–589 (1984).
    [Crossref]
  14. J. O. Ramsay, “Monotone regression splines in action,” Stat. Sci. 3(4), 425–441 (1988).
    [Crossref]
  15. E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys. 30(4), 608–622 (2003).
    [Crossref] [PubMed]
  16. J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
    [Crossref] [PubMed]
  17. M. Flynn, S. Wilderman, and J. Kanicki, “Effect of secondary radiations on the performance of digital radiographic detectors,” Proc. SPIE 3336, 326–336 (1998).
    [Crossref]
  18. J. A. Seibert, O. Nalcioglu, and W. W. Roeck, “Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy,” Med. Phys. 11(2), 172–179 (1984).
    [Crossref] [PubMed]

2012 (1)

J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys. 39(10), 6149–6160 (2012).
[Crossref] [PubMed]

2007 (1)

N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
[Crossref] [PubMed]

2006 (1)

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

2005 (1)

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

2003 (2)

E. Buhr, S. Gunther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled MTF of a digital radiographic system from an edge image,” Med. Phys. 30, 2323–2331 (2003).
[Crossref] [PubMed]

E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys. 30(4), 608–622 (2003).
[Crossref] [PubMed]

1998 (2)

M. Flynn, S. Wilderman, and J. Kanicki, “Effect of secondary radiations on the performance of digital radiographic detectors,” Proc. SPIE 3336, 326–336 (1998).
[Crossref]

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

1995 (2)

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

1992 (2)

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

I. A. Cunningham and B. K. Reid, “Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques,” Med. Phys. 19(4), 1037–1044 (1992).
[Crossref] [PubMed]

1988 (1)

J. O. Ramsay, “Monotone regression splines in action,” Stat. Sci. 3(4), 425–441 (1988).
[Crossref]

1984 (2)

B. W. Silverman, “A fast and efficient cross-validation method for smoothing parameter choice in spline regression,” J. Am. Stat. Assoc. 79(387), 584–589 (1984).
[Crossref]

J. A. Seibert, O. Nalcioglu, and W. W. Roeck, “Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy,” Med. Phys. 11(2), 172–179 (1984).
[Crossref] [PubMed]

1972 (1)

K. Doi, K. Strubler, and K. Rossmann, “Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function,” Phys. Med. Biol. 17(2), 241–250 (1972).
[Crossref] [PubMed]

Blume, H.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

Bollen, R.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

Buhr, E.

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

E. Buhr, S. Gunther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled MTF of a digital radiographic system from an edge image,” Med. Phys. 30, 2323–2331 (2003).
[Crossref] [PubMed]

Bunch, P. C.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

Chen, Y.

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

Clark, D. C.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

Cunningham, I. A.

I. A. Cunningham and B. K. Reid, “Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques,” Med. Phys. 19(4), 1037–1044 (1992).
[Crossref] [PubMed]

Dobbins, J. T.

J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys. 39(10), 6149–6160 (2012).
[Crossref] [PubMed]

N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
[Crossref] [PubMed]

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

Doi, K.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

K. Doi, K. Strubler, and K. Rossmann, “Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function,” Phys. Med. Biol. 17(2), 241–250 (1972).
[Crossref] [PubMed]

Ergun, D. L.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

Flynn, M.

M. Flynn, S. Wilderman, and J. Kanicki, “Effect of secondary radiations on the performance of digital radiographic detectors,” Proc. SPIE 3336, 326–336 (1998).
[Crossref]

Flynn, M. J.

E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys. 30(4), 608–622 (2003).
[Crossref] [PubMed]

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Fujita, H.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Granfors, P.

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

Gunther-Kohfahl, S.

E. Buhr, S. Gunther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled MTF of a digital radiographic system from an edge image,” Med. Phys. 30, 2323–2331 (2003).
[Crossref] [PubMed]

Hinshaw, D. A.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

Hoeschen, D.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

Itoh, T.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Kanicki, J.

M. Flynn, S. Wilderman, and J. Kanicki, “Effect of secondary radiations on the performance of digital radiographic detectors,” Proc. SPIE 3336, 326–336 (1998).
[Crossref]

Morishita, J.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Nalcioglu, O.

J. A. Seibert, O. Nalcioglu, and W. W. Roeck, “Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy,” Med. Phys. 11(2), 172–179 (1984).
[Crossref] [PubMed]

Neitzel, U.

E. Buhr, S. Gunther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled MTF of a digital radiographic system from an edge image,” Med. Phys. 30, 2323–2331 (2003).
[Crossref] [PubMed]

Ohtsuka, A.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Ramsay, J. O.

J. O. Ramsay, “Monotone regression splines in action,” Stat. Sci. 3(4), 425–441 (1988).
[Crossref]

Ranger, N. T.

N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
[Crossref] [PubMed]

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

Ravin, C. E.

N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
[Crossref] [PubMed]

Reid, B. K.

I. A. Cunningham and B. K. Reid, “Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques,” Med. Phys. 19(4), 1037–1044 (1992).
[Crossref] [PubMed]

Reimann, D. A.

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Roeck, W. W.

J. A. Seibert, O. Nalcioglu, and W. W. Roeck, “Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy,” Med. Phys. 11(2), 172–179 (1984).
[Crossref] [PubMed]

Rossmann, K.

K. Doi, K. Strubler, and K. Rossmann, “Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function,” Phys. Med. Biol. 17(2), 241–250 (1972).
[Crossref] [PubMed]

Rutz, L.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

Samei, E.

N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
[Crossref] [PubMed]

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys. 30(4), 608–622 (2003).
[Crossref] [PubMed]

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Seibert, J. A.

J. A. Seibert, O. Nalcioglu, and W. W. Roeck, “Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy,” Med. Phys. 11(2), 172–179 (1984).
[Crossref] [PubMed]

Silverman, B. W.

B. W. Silverman, “A fast and efficient cross-validation method for smoothing parameter choice in spline regression,” J. Am. Stat. Assoc. 79(387), 584–589 (1984).
[Crossref]

Sirand-rey, G.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

Strubler, K.

K. Doi, K. Strubler, and K. Rossmann, “Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function,” Phys. Med. Biol. 17(2), 241–250 (1972).
[Crossref] [PubMed]

Sukenobu, Y.

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

Tsai, D. Y.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Ueda, K.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Vandenbroucke, D.

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

Wang, X.

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

Wells, J. R.

J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys. 39(10), 6149–6160 (2012).
[Crossref] [PubMed]

Wilderman, S.

M. Flynn, S. Wilderman, and J. Kanicki, “Effect of secondary radiations on the performance of digital radiographic detectors,” Proc. SPIE 3336, 326–336 (1998).
[Crossref]

I. Modulation transfer function. Med. Phys. (1)

E. Samei, N. T. Ranger, and J. T. Dobbins III, andY. Chen, “Intercomparison of methods for image quality characterization,” I. Modulation transfer function. Med. Phys. 33(5), 1454–1465 (2006).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

J. Am. Stat. Assoc. (1)

B. W. Silverman, “A fast and efficient cross-validation method for smoothing parameter choice in spline regression,” J. Am. Stat. Assoc. 79(387), 584–589 (1984).
[Crossref]

Med. Phys. (8)

E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys. 30(4), 608–622 (2003).
[Crossref] [PubMed]

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22(10), 1581–1593 (1995).
[Crossref] [PubMed]

J. Morishita, K. Doi, R. Bollen, P. C. Bunch, D. Hoeschen, G. Sirand-rey, and Y. Sukenobu, “Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems,” Med. Phys. 22(2), 193–200 (1995).
[Crossref] [PubMed]

J. A. Seibert, O. Nalcioglu, and W. W. Roeck, “Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy,” Med. Phys. 11(2), 172–179 (1984).
[Crossref] [PubMed]

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

I. A. Cunningham and B. K. Reid, “Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques,” Med. Phys. 19(4), 1037–1044 (1992).
[Crossref] [PubMed]

E. Buhr, S. Gunther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled MTF of a digital radiographic system from an edge image,” Med. Phys. 30, 2323–2331 (2003).
[Crossref] [PubMed]

J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys. 39(10), 6149–6160 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

E. Samei, E. Buhr, P. Granfors, D. Vandenbroucke, and X. Wang, “Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems,” Phys. Med. Biol. 50(15), 3613–3625 (2005).
[Crossref] [PubMed]

K. Doi, K. Strubler, and K. Rossmann, “Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function,” Phys. Med. Biol. 17(2), 241–250 (1972).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Flynn, S. Wilderman, and J. Kanicki, “Effect of secondary radiations on the performance of digital radiographic detectors,” Proc. SPIE 3336, 326–336 (1998).
[Crossref]

Radiology (1)

N. T. Ranger, E. Samei, J. T. Dobbins, and C. E. Ravin, “Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods,” Radiology 243(3), 785–795 (2007).
[Crossref] [PubMed]

Stat. Sci. (1)

J. O. Ramsay, “Monotone regression splines in action,” Stat. Sci. 3(4), 425–441 (1988).
[Crossref]

Other (2)

J. T. Dobbins III, “Image Quality Metrics for Digital Systems,” in Handbook of Medical Imaging, Vol. 1. Physics and Psychophysics, J. Beutel, H. L. Kundel and R. L. Van Metter, ed. (SPIE, Bellingham, WA, 2000).

IEC publication, “Medical electrical equipment—Characteristics of digital x-ray imaging devices - Part 1: Determination of the detective quantum efficiency,” IEC 62220–1, Geneva, Switzerland, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Simulation of slit images with Gaussian distribution. (a) Mean normalized LSFs from exponential extrapolation method and monotone spline regression technique. (b) The relative MTF errors of LSF extrapolation method according to different datum lengths for exponential form prediction of LSF tails. (c) The comparison of the mean MTF measurements by the two methods. (d) Detailed differences between the true MTF and each of the MTF measurements.
Fig. 2
Fig. 2 Simulation of slit images with Lorentzian distribution. (a) Mean normalized LSFs by exponential extrapolation method and monotone spline regression technique. (b) The relative MTF errors of LSF extrapolation method according to different datum lengths for exponential form prediction of LSF tails. (c) The comparison of the mean MTF measurements by the two methods. (d) Detailed differences between the true MTF and each of the MTF measurements.
Fig. 3
Fig. 3 Simulation of slit images with Exponential distribution. (a) Mean normalized LSFs by exponential extrapolation method and monotone spline regression technique. (b) The relative MTF errors of LSF extrapolation method according to different datum lengths for exponential form prediction of LSF tails. (c) The comparison of the mean MTF measurements by the two methods. (d) Detailed differences between the true MTF and each of the MTF measurements.
Fig. 4
Fig. 4 Two MTF measurement algorithms are applied on the experimental edge images of the prototype x-ray imaging system. Comparison of (a) normalized LSFs, (b) relative difference of MTF results of the two MTF measurement algorithms according to different datum section length for exponential form prediction, (c) MTF results up to cut-off frequency, and (d) MTF results in the frequency range of 0-2 mm-1.

Tables (3)

Tables Icon

Table 1 Mean and Standard Deviation of the difference in ΔMTF for each algorithm according to the simulated slit images with Gaussian distribution

Tables Icon

Table 2 Mean and Standard Deviation of the difference in ΔMTF for each algorithm according to the simulated slit images with Lorentzian distribution

Tables Icon

Table 3 Mean and Standard Deviation of the difference in ΔMTF for each algorithm according to the simulated slit images with Exponential distribution

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y i = f ( x i ) + ε i
i = 1 n [ y i f ( x i ) ] 2 + λ a b [ f ( d ) ( x ) ] 2 d x
M i 1 ( x ) = { 1 t i + 1 t i , f o r t i x < t i + 1 0 , o t h e r w i s e
M i q ( x ) = { q [ ( x t i ) M i q 1 ( x ) + ( t i + q x ) M i + 1 q 1 ( x ) ] ( q 1 ) ( t i + q t i ) , f o r t i x < t i + q 0 , o t h e r w i s e
I i q + 1 ( x ) = t 1 x M i q ( u ) d u

Metrics