Abstract

The most sensitive lines of carbon, used nowadays for its determination in steels by laser-induced-breakdown spectroscopy (LIBS), are at vacuum UV and, thereby, LIBS potential is significantly reduced. We suggested the use of the C I 833.51 nm line for carbon determination in low-alloy steels (c(C)~0.186-1.33 wt.%) in air. Double-pulse LIBS with the collinear scheme was performed for maximal enhancement of a carbon emission signal without substantial complication of experimental setup. Since this line is strongly broadened in laser plasma, it overlapped with the closest iron lines greatly. We implemented a PCR method for the construction of a multivariate calibration model under spectral interferences. The model provided a RMSECV = 0.045 wt.%. The predicted carbon content in the rail templet was in an agreement with the reference value obtained by a combustion analyzer within the relative error of 6%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet

Laszlo Peter, Volker Sturm, and Reinhard Noll
Appl. Opt. 42(30) 6199-6204 (2003)

Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence

Changmao Li, Zhongqi Hao, Zhimin Zou, Ran Zhou, Jiaming Li, Lianbo Guo, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Opt. Express 24(8) 7850-7857 (2016)

Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils

Madhavi Z. Martin, Stan D. Wullschleger, Charles T. Garten, and Anthony V. Palumbo
Appl. Opt. 42(12) 2072-2077 (2003)

References

  • View by:
  • |
  • |
  • |

  1. V. B. E. Thomsen, Modern Spectrochemical Analysis of Metals (ASM International, 1996).
  2. R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Springer, 2012).
  3. J. A. C. Broekaert, Analytical Atomic Spectrometry with Flames and Plasmas (Wiley-VCH, 2005).
  4. C. Aragón, J. A. Aguilera, and J. Campos, “Determination of carbon content in molten steel using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 47(5), 606–608 (1993).
    [Crossref]
  5. C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53(10), 1259–1267 (1999).
    [Crossref]
  6. M. A. Khater, J. T. Costello, and E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56(8), 970–983 (2002).
    [Crossref]
  7. V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, “Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo,” J. Anal. At. Spectrom. 19(4), 451–456 (2004).
    [Crossref]
  8. J. Wormhoudt, F. J. Iannarilli, S. Jones, K. D. Annen, and A. Freedman, “Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer,” Appl. Spectrosc. 59(9), 1098–1102 (2005).
    [Crossref] [PubMed]
  9. L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42(30), 6199–6204 (2003).
    [Crossref] [PubMed]
  10. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
    [Crossref]
  11. M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
    [Crossref]
  12. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
    [Crossref]
  13. S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).
  14. A. Kramida Yu. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.1) (2013) [Online]. Available: http://physics.nist.gov/asd [2014, July 7].
  15. C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
    [Crossref]
  16. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).
  17. R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
    [Crossref]
  18. B.-H. Mevik and R. Wehrens, “The pls Package: Principal Component and Partial Least Squares Regression in R,” J. Stat. Soft. 18(2), 1–24 (2007).
  19. E. V. Thomas, “A Primer on Multivariate Calibration,” Anal. Chem. 66(15), 795A–804A (1994).
    [Crossref]
  20. GOST, 12344–2003, Alloyed and high-alloyed steels. Methods for determination of carbon (Federal Agency on Technical Regulations and Metrology, Russia, 2004).

2014 (1)

S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).

2009 (1)

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

2007 (1)

B.-H. Mevik and R. Wehrens, “The pls Package: Principal Component and Partial Least Squares Regression in R,” J. Stat. Soft. 18(2), 1–24 (2007).

2006 (2)

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
[Crossref]

2005 (1)

2004 (1)

V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, “Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo,” J. Anal. At. Spectrom. 19(4), 451–456 (2004).
[Crossref]

2003 (1)

2002 (1)

2000 (2)

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
[Crossref]

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
[Crossref]

1999 (1)

1994 (1)

E. V. Thomas, “A Primer on Multivariate Calibration,” Anal. Chem. 66(15), 795A–804A (1994).
[Crossref]

1993 (1)

Aguilera, J. A.

Annen, K. D.

Aragón, C.

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

Belkov, M. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

Brereton, R. G.

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
[Crossref]

Burakov, V. S.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

Campos, J.

Costello, J. T.

De Giacomo, A.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

Dubessy, J.

C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
[Crossref]

Fichet, P.

C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
[Crossref]

Freedman, A.

Gautier, C.

C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
[Crossref]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

Hemmerlin, M.

V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, “Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo,” J. Anal. At. Spectrom. 19(4), 451–456 (2004).
[Crossref]

Iannarilli, F. J.

Jones, S.

Kennedy, E. T.

Khater, M. A.

Kiris, V. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

Labutin, T. A.

S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).

Menut, D.

C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
[Crossref]

Mevik, B.-H.

B.-H. Mevik and R. Wehrens, “The pls Package: Principal Component and Partial Least Squares Regression in R,” J. Stat. Soft. 18(2), 1–24 (2007).

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

Noll, R.

Peñalba, F.

Peter, L.

Popov, A. M.

S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).

Raikov, S. N.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

Sturm, V.

Tarasenko, N. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

Thomas, E. V.

E. V. Thomas, “A Primer on Multivariate Calibration,” Anal. Chem. 66(15), 795A–804A (1994).
[Crossref]

Vrenegor, J.

V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, “Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo,” J. Anal. At. Spectrom. 19(4), 451–456 (2004).
[Crossref]

Wehrens, R.

B.-H. Mevik and R. Wehrens, “The pls Package: Principal Component and Partial Least Squares Regression in R,” J. Stat. Soft. 18(2), 1–24 (2007).

Wormhoudt, J.

Zaytsev, S. M.

S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).

Zorov, N. B.

S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).

Anal. Chem. (1)

E. V. Thomas, “A Primer on Multivariate Calibration,” Anal. Chem. 66(15), 795A–804A (1994).
[Crossref]

Analyst (Lond.) (1)

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (5)

J. Anal. At. Spectrom. (1)

V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, “Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo,” J. Anal. At. Spectrom. 19(4), 451–456 (2004).
[Crossref]

J. Instrum. (1)

S. M. Zaytsev, A. M. Popov, N. B. Zorov, and T. A. Labutin, “Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment,” J. Instrum. 9, P06010 (2014).

J. Stat. Soft. (1)

B.-H. Mevik and R. Wehrens, “The pls Package: Principal Component and Partial Least Squares Regression in R,” J. Stat. Soft. 18(2), 1–24 (2007).

Spectrochim. Acta, B At. Spectrosc. (3)

C. Gautier, P. Fichet, D. Menut, and J. Dubessy, “Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials,” Spectrochim. Acta, B At. Spectrosc. 61(2), 210–219 (2006).
[Crossref]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, B At. Spectrosc. 64(9), 899–904 (2009).
[Crossref]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[Crossref]

Other (6)

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

A. Kramida Yu. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.1) (2013) [Online]. Available: http://physics.nist.gov/asd [2014, July 7].

V. B. E. Thomsen, Modern Spectrochemical Analysis of Metals (ASM International, 1996).

R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Springer, 2012).

J. A. C. Broekaert, Analytical Atomic Spectrometry with Flames and Plasmas (Wiley-VCH, 2005).

GOST, 12344–2003, Alloyed and high-alloyed steels. Methods for determination of carbon (Federal Agency on Technical Regulations and Metrology, Russia, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) LIBS spectra of the UG 0i steel and the high-purity iron obtained at the similar conditions (double pulse mode: 15 + 60 mJ/pulse, interpulse delay 1 µs, delay 1 µs, gate 0.5 µs; single pulse mode: 75 mJ/pulse, same delay and gate). (b) Differences between normalized by the Fe I 832.71 nm double pulse LIBS spectra of steels and iron.
Fig. 2
Fig. 2 Evolution of the RMSECV with the increasing of the number of PC. Optimal number of PC is equal to 4.
Fig. 3
Fig. 3 The results of calibration and LOOCV procedures for two training sets: 10 training samples (9 standard samples of steel and pure iron) (a) and 7 training samples (6 standard samples of steel and pure iron) (b).

Tables (2)

Tables Icon

Table 1 Samples Composition, wt.%

Tables Icon

Table 2 Prediction Accuracy of PCR Models and Results of Prediction of Carbon Content in Rail Templet

Metrics