Abstract

We demonstrate, by generating a THz electric field directly within the guiding structure, an active two-wire waveguide operating in the terahertz (THz) range of wavelengths. We compare the energy throughput of the active configuration with that of a radiatively coupled semi-large photoconductive antenna, in which the radiation is generated outside the waveguide, reporting a 60 times higher energy throughput for the same illumination power and applied voltage. This novel, active waveguide design allows to have efficient coupling of the THz radiation in a dispersion-less waveguide without the need of involved radiative coupling geometries.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient coupling of propagating broadband terahertz radial beams to metal wires

Zhu Zheng, Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami
Opt. Express 21(9) 10642-10650 (2013)

Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]

Andrey Markov, Hichem Guerboukha, and Maksim Skorobogatiy
J. Opt. Soc. Am. B 31(11) 2587-2600 (2014)

Enhanced THz guiding properties of curved two-wire lines

Jingshu Zha, Geun Ju Kim, and Tae-In Jeon
Opt. Express 24(6) 6136-6144 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Jamison, R. W. Mc Gowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
    [Crossref]
  2. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
    [Crossref]
  3. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
    [Crossref] [PubMed]
  4. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [Crossref] [PubMed]
  5. S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5(2), 169–215 (2013).
    [Crossref]
  6. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  7. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [Crossref]
  8. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
    [Crossref]
  9. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
    [Crossref]
  10. H. Pahlevaninezhad and T. E. Darcie, “Coupling of terahertz waves to a two-wire waveguide,” Opt. Express 18(22), 22614–22624 (2010).
    [Crossref] [PubMed]
  11. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18(7), 7415–7420 (2010).
    [Crossref] [PubMed]
  12. P. Tannouri, M. Peccianti, P. L. Lavertu, F. Vidal, and R. Morandotti, “Quasi-TEM mode propagation in twin-wire THz waveguides,” Chin. Opt. Lett. 9, 110013 (2011).
    [Crossref]
  13. J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
    [Crossref] [PubMed]
  14. J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
    [Crossref] [PubMed]
  15. A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
    [Crossref] [PubMed]
  16. M. K. Mridha, A. Mazhorova, M. Daneau, M. Clerici, M. Peccianti, P.-L. Lavertu, X. Ropagnol, F. Vidal, and R. Morandotti, “Low dispersion propagation of broadband THz pulses in a two-wire waveguide,” Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2013), paper. CTh1K.6.
    [Crossref]
  17. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
    [Crossref]
  18. G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
    [Crossref]
  19. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  20. M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
    [Crossref]
  21. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
    [Crossref]
  22. A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
    [PubMed]
  23. P. Petruzzi, C. Lowry, and P. Sivanesan, “Dispersion compensation using only fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1339–1344 (1999).
    [Crossref]
  24. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  25. K. O. Hill, B. Malo, F. Bilodeau, S. Thériault, D. C. Johnson, and J. Albert, “Variable-spectral-response optical waveguide Bragg grating filters for optical signal processing,” Opt. Lett. 20(12), 1438–1440 (1995).
    [Crossref] [PubMed]
  26. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
    [Crossref]
  27. L. Wentai, Z. Chunxi, L. Lijing, and L. Sheng, “Review on development and applications of fiber-optic sensors,” in Symposium on Photonics and Optoelectronics (SOPO),2012, pp. 1–4.
  28. A. Farhad, “Fiber optic health monitoring of civil structures using long gage and acoustic sensors,” Smart Mater. Struct. 14(3), S1–S7 (2005).
    [Crossref]
  29. G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Low-loss terahertz waveguide Bragg grating using a two-wire waveguide and a paper grating,” Opt. Lett. 38(16), 3089–3092 (2013).
    [Crossref] [PubMed]
  30. S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, “Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings,” Opt. Lett. 38(3), 260–262 (2013).
    [Crossref] [PubMed]
  31. Lumerical Solutions, Inc., https://www.lumerical.com/tcad-products/fdtd/ .
  32. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2013 (6)

2011 (3)

2010 (2)

2009 (1)

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

2006 (3)

2005 (2)

A. Farhad, “Fiber optic health monitoring of civil structures using long gage and acoustic sensors,” Smart Mater. Struct. 14(3), S1–S7 (2005).
[Crossref]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

2004 (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

2002 (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

2001 (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

2000 (2)

S. P. Jamison, R. W. Mc Gowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[Crossref]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[Crossref]

1999 (1)

P. Petruzzi, C. Lowry, and P. Sivanesan, “Dispersion compensation using only fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1339–1344 (1999).
[Crossref]

1996 (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[Crossref]

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
[Crossref]

1995 (1)

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[Crossref]

Abbott, D.

Afshar V, S.

Albert, J.

Anthony, J.

Argyros, A.

Atakaramians, S.

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[Crossref]

Baumann, I.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
[Crossref]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Bilodeau, F.

Bock, W. J.

Busacca, A. C.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Chan, H. P.

Chen, H.-W.

Chen, L.-J.

Chinifooroshan, Y.

Chow, Y. T.

Chunxi, Z.

L. Wentai, Z. Chunxi, L. Lijing, and L. Sheng, “Review on development and applications of fiber-optic sensors,” in Symposium on Photonics and Optoelectronics (SOPO),2012, pp. 1–4.

Cino, A. C.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Darcie, T. E.

Deibel, J. A.

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Escarra, M. D.

Farhad, A.

A. Farhad, “Fiber optic health monitoring of civil structures using long gage and acoustic sensors,” Smart Mater. Struct. 14(3), S1–S7 (2005).
[Crossref]

Fletcher, J. R.

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

S. P. Jamison, R. W. Mc Gowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[Crossref]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[Crossref]

Heshmat, B.

Hill, K. O.

Jamison, S. P.

S. P. Jamison, R. W. Mc Gowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[Crossref]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Johnson, D. C.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Kao, T.-F.

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Lavertu, P. L.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Leonhardt, R.

Lijing, L.

L. Wentai, Z. Chunxi, L. Lijing, and L. Sheng, “Review on development and applications of fiber-optic sensors,” in Symposium on Photonics and Optoelectronics (SOPO),2012, pp. 1–4.

Litz, M.

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[Crossref]

Livreri, P.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Lowry, C.

P. Petruzzi, C. Lowry, and P. Sivanesan, “Dispersion compensation using only fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1339–1344 (1999).
[Crossref]

Lu, J.-Y.

Luk, K. M.

Malo, B.

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Markov, A.

Mazhorova, A.

Mbonye, M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

Mc Gowan, R. W.

S. P. Jamison, R. W. Mc Gowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[Crossref]

Mendis, R.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[Crossref]

Miles, R. E.

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

Mittleman, D.

Mittleman, D. M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Monro, T. M.

Morandotti, R.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

P. Tannouri, M. Peccianti, P. L. Lavertu, F. Vidal, and R. Morandotti, “Quasi-TEM mode propagation in twin-wire THz waveguides,” Chin. Opt. Lett. 9, 110013 (2011).
[Crossref]

Naftaly, M.

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

Nowak, W.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
[Crossref]

Nuss, M. C.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[Crossref]

Pahlevaninezhad, H.

Parisi, A.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Peccianti, M.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

P. Tannouri, M. Peccianti, P. L. Lavertu, F. Vidal, and R. Morandotti, “Quasi-TEM mode propagation in twin-wire THz waveguides,” Chin. Opt. Lett. 9, 110013 (2011).
[Crossref]

Petruzzi, P.

P. Petruzzi, C. Lowry, and P. Sivanesan, “Dispersion compensation using only fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1339–1344 (1999).
[Crossref]

Planken, P. C. M.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

Preu, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Reekie, L.

Rozé, M.

Sauer, M.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
[Crossref]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

Seifert, J.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
[Crossref]

Sheng, L.

L. Wentai, Z. Chunxi, L. Lijing, and L. Sheng, “Review on development and applications of fiber-optic sensors,” in Symposium on Photonics and Optoelectronics (SOPO),2012, pp. 1–4.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Sivanesan, P.

P. Petruzzi, C. Lowry, and P. Sivanesan, “Dispersion compensation using only fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1339–1344 (1999).
[Crossref]

Skorobogatiy, M.

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[Crossref]

Steenson, D. P.

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

Stivala, S.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Stone, M. R.

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

Sun, C.-K.

Tannouri, P.

Thériault, S.

Tomasino, A.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Tripathi, S. M.

Ung, B.

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Vidal, F.

Walther, M.

Wang, K.

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Wenckebach, W. T.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

Wentai, L.

L. Wentai, Z. Chunxi, L. Lijing, and L. Sheng, “Review on development and applications of fiber-optic sensors,” in Symposium on Photonics and Optoelectronics (SOPO),2012, pp. 1–4.

Wu, Q.

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[Crossref]

Yan, G.

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Zhang, X. C.

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[Crossref]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

Zhou, S. F.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (4)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

S. P. Jamison, R. W. Mc Gowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[Crossref]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Petruzzi, C. Lowry, and P. Sivanesan, “Dispersion compensation using only fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1339–1344 (1999).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996).
[Crossref]

IEEE T. Microw. Theory (1)

M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, and D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters,” IEEE T. Microw. Theory 52(10), 2420–2429 (2004).
[Crossref]

J. Appl. Phys. (2)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[Crossref]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
[Crossref]

Sci Rep (1)

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci Rep 3, 3116 (2013).
[PubMed]

Smart Mater. Struct. (1)

A. Farhad, “Fiber optic health monitoring of civil structures using long gage and acoustic sensors,” Smart Mater. Struct. 14(3), S1–S7 (2005).
[Crossref]

Other (3)

Lumerical Solutions, Inc., https://www.lumerical.com/tcad-products/fdtd/ .

L. Wentai, Z. Chunxi, L. Lijing, and L. Sheng, “Review on development and applications of fiber-optic sensors,” in Symposium on Photonics and Optoelectronics (SOPO),2012, pp. 1–4.

M. K. Mridha, A. Mazhorova, M. Daneau, M. Clerici, M. Peccianti, P.-L. Lavertu, X. Ropagnol, F. Vidal, and R. Morandotti, “Low dispersion propagation of broadband THz pulses in a two-wire waveguide,” Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2013), paper. CTh1K.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) 10 cm long two-wire transmitter in a passive configuration. The wires are held under tension by wrapping them around plastic screws. An aluminum base plate supports the two-wire waveguide design. (b) A thin GaAs piece (300 µm × 300 µm × 5mm) inserted between the wires and serving as a PC semi-large area antenna inside the two-wire THz transmitter (active configuration).

Fig. 2
Fig. 2

(a) Schematic for the dielectric support holder for the wires of diameter 250 µm. The central hole is 800 µm in diameter, while the separation between the two wires is 300 µm. (b) Top-view of the experimental setup used for calibrating the maximum signal attainable from the GaAs integrated semi-large area PC antenna. The emitted THz radiation is focused onto a ZnTe crystal. Changes in the probe beam (800 nm) polarization are measured using a Wollaston prism and photo detectors (PDs). (c) Details of the integrated semi-large area PC antenna used to generate THz radiation, (d) schematic of the passive configuration where the THz radiation from the integrated semi-large area PC antenna is coupled into the two-wire waveguide, (e) schematic of the active configuration; here both the generation and the coupling of the THz radiation occur directly inside the two-wire waveguide. The arrows indicate the direction of the THz radiation emitted in each case in the plane containing the two wires.

Fig. 3
Fig. 3

(a) Measured temporal waveform from the GaAs piece used as a semi-large area PC antenna (normalized to its peak). (b) Measured power spectra of the PC antenna (blue), 10 cm waveguide (green), 10 cm long TWT (red) and 20 cm long TWT (black), normalized to the peak of the PC antenna’s spectrum. (c) Measured THz waveform of the 20 cm long TWT (normalized to its peak). In the inset, simulated THz waveform emitted by the 20 cm TWT. (d) Comparison between the numerical and experimental spectra recorded at the output of the 20 cm long TWT.

Fig. 4
Fig. 4

(a) The actual polymer mesh with the horizontal and vertical rods. (b) The vertical polymer rods used for the experiment after removing the horizontal rods of the mesh. The average diameter of these rods, as measured under a microscope, is 110 ± 10 µm and the average air spacing in between the rods is 137 ± 20 µm. As a result the period of the grating is approximately 247 ± 30 µm.

Fig. 5
Fig. 5

(a) Measured temporal waveforms from the 10 cm TWT (in blue) and with the inserted grating (in green) (b) Transmission spectrum of the signal detected after inserting the grating in the waveguide. A fine notch of 23 dB is observed at 0.58 ± 0.01 THz with a line width of ~16 GHz.

Fig. 6
Fig. 6

(a) Snapshot of the FDTD simulation layout (top view) of the polymer Bragg grating inserted in the two-wire waveguide. A time monitor records the time varying electric field of the THz pulse (generated by the single dipole source) after passing through the Bragg grating. (b) Power spectrum of the grating response recorded by the time monitor in the FDTD simulation with the dip at 0.59 THz.

Metrics