Abstract

We present time-resolved reflectivity and transmissivity of hot, overdense plasma by employing a multicolor probe beam, consisting of harmonics at wavelengths of 800 nm, 400 nm and 266 nm. The hot-dense plasma, formed by exciting a fused silica target with a 30 fs, 2 × 1017 W cm−2 intensity pulse, shows a sub-picosecond transition in reflectivity (transmissivity), and a wavelength-dependent fall (rise) in the reflected (transmitted) signal. A simple model of probe absorption in the plasma via inverse bremsstrahlung is used to determine electron-ion collision frequency at different plasma densities.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-order harmonics from solid targets as a probe for high-density plasmas

R. Hässner, W. Theobald, S. Niedermeier, H. Schillinger, and R. Sauerbrey
Opt. Lett. 22(19) 1491-1493 (1997)

Ultrafast ablation dynamics in fused silica with a white light beam probe

Ping-Han Wu, Xuan-Yu Yu, Chung-Wei Cheng, Che-Hao Liao, Shih-Wei Feng, and Hsiang-Chen Wang
Opt. Express 19(17) 16390-16400 (2011)

Picosecond dynamics of a hot solid-density plasma

J. C. Kieffer, Z. Jiang, A. Ikhlef, C. Y. Cote, and O. Peyrusse
J. Opt. Soc. Am. B 13(1) 132-137 (1996)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
    [Crossref] [PubMed]
  2. T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
    [Crossref] [PubMed]
  3. S. Williamson, G. Mourou, and J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984).
    [Crossref]
  4. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
    [Crossref] [PubMed]
  5. C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
    [Crossref]
  6. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
    [Crossref]
  7. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  8. M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
    [Crossref]
  9. P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
    [Crossref]
  10. P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
    [Crossref]
  11. H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
    [Crossref]
  12. A. S. Sandhu, A. K. Dharmadhikari, and G. Ravindra Kumar, “Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse,” J. Appl. Phys. 97, 023526 (2005).
    [Crossref]
  13. B.-T. V. Vu, A. Szoke, and O. L. Landen, “Time-resolved probing of electron thermal transport in plasma produced by femtosecond laser pulses,” Phys. Rev. Lett. 72, 3823–3826 (1994).
    [Crossref] [PubMed]
  14. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
    [Crossref]
  15. W. L. Kruer, The Physics of Laser Plasma Interactions (Addision-Wesley, 1988).
  16. G. Guethlein, M. E. Foord, and D. Price, “Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses,” Phys. Rev. Lett. 77, 1055–1058 (1996).
    [Crossref] [PubMed]
  17. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
    [Crossref]
  18. L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
    [Crossref]
  19. J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
    [Crossref]
  20. S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
    [Crossref] [PubMed]

2013 (1)

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

2010 (1)

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

2009 (1)

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

2008 (1)

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

2006 (1)

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

2005 (1)

A. S. Sandhu, A. K. Dharmadhikari, and G. Ravindra Kumar, “Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse,” J. Appl. Phys. 97, 023526 (2005).
[Crossref]

2003 (1)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref] [PubMed]

2000 (1)

K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
[Crossref]

1999 (1)

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

1996 (1)

G. Guethlein, M. E. Foord, and D. Price, “Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses,” Phys. Rev. Lett. 77, 1055–1058 (1996).
[Crossref] [PubMed]

1994 (1)

B.-T. V. Vu, A. Szoke, and O. L. Landen, “Time-resolved probing of electron thermal transport in plasma produced by femtosecond laser pulses,” Phys. Rev. Lett. 72, 3823–3826 (1994).
[Crossref] [PubMed]

1988 (1)

H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
[Crossref]

1987 (2)

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[Crossref] [PubMed]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

1984 (2)

S. Williamson, G. Mourou, and J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984).
[Crossref]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
[Crossref]

1983 (1)

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[Crossref]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Amiranoff, F.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Antonicci, A.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Ao, T.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Bachelier, G.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Bandulet, H.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Batani, D.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Baton, S. D.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Bernardinello, A.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Bloembergen, N.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
[Crossref]

Bonnaud, G.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Bonse, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Brorson, S. D.

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

Cao, J.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Chen, J.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

Chen, L.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Davey, S. C.

H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
[Crossref]

Dharmadhikari, A. K.

A. S. Sandhu, A. K. Dharmadhikari, and G. Ravindra Kumar, “Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse,” J. Appl. Phys. 97, 023526 (2005).
[Crossref]

Dumpich, G.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

Dwyer, J. R.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref] [PubMed]

Eesley, G. L.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[Crossref] [PubMed]

Eidmann, K.

K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
[Crossref]

Foord, M. E.

G. Guethlein, M. E. Foord, and D. Price, “Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses,” Phys. Rev. Lett. 77, 1055–1058 (1996).
[Crossref] [PubMed]

Freeman, R. R.

H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
[Crossref]

Fujimoto, J. G.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[Crossref] [PubMed]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
[Crossref]

Gauthier, J.-C.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Gawelda, W.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Gremillet, L.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Guethlein, G.

G. Guethlein, M. E. Foord, and D. Price, “Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses,” Phys. Rev. Lett. 77, 1055–1058 (1996).
[Crossref] [PubMed]

Hall, T.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Hassel, C.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[Crossref]

Huller, S.

K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
[Crossref]

Ippen, E. P.

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
[Crossref]

Jordan, R. E.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref] [PubMed]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Koenig, M.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Kruer, W. L.

W. L. Kruer, The Physics of Laser Plasma Interactions (Addision-Wesley, 1988).

Landen, O. L.

B.-T. V. Vu, A. Szoke, and O. L. Landen, “Time-resolved probing of electron thermal transport in plasma produced by femtosecond laser pulses,” Phys. Rev. Lett. 72, 3823–3826 (1994).
[Crossref] [PubMed]

Lebourg, C.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Lee, E.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Li, J.

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Li, J. C. M.

S. Williamson, G. Mourou, and J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984).
[Crossref]

Li, R.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Ligges, M.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[Crossref] [PubMed]

Liu, J. M.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
[Crossref]

Martinolli, E.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Meyer-ter-Vehn, J.

K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Milchberg, H. M.

H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
[Crossref]

Miller, R. J. D.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref] [PubMed]

More, R. M.

H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
[Crossref]

Mourou, G.

S. Williamson, G. Mourou, and J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984).
[Crossref]

Ng, A.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Norreys, P.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Perelman, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Ping, Y.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Pisani, F.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Posth, O.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

Ppin, H.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Price, D.

G. Guethlein, M. E. Foord, and D. Price, “Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses,” Phys. Rev. Lett. 77, 1055–1058 (1996).
[Crossref] [PubMed]

Price, D. F.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Puerto, D.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Qian, D.

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Rajkovic, I.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

Ravindra Kumar, G.

A. S. Sandhu, A. K. Dharmadhikari, and G. Ravindra Kumar, “Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse,” J. Appl. Phys. 97, 023526 (2005).
[Crossref]

Rousseaux, C.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Sandhu, A. S.

A. S. Sandhu, A. K. Dharmadhikari, and G. Ravindra Kumar, “Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse,” J. Appl. Phys. 97, 023526 (2005).
[Crossref]

Schlegel, T.

K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
[Crossref]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[Crossref] [PubMed]

Scott, D.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[Crossref]

Sheng, Z. M.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Siegel, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Siwick, B. J.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Solis, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Springer, P. T.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Szoke, A.

B.-T. V. Vu, A. Szoke, and O. L. Landen, “Time-resolved probing of electron thermal transport in plasma produced by femtosecond laser pulses,” Phys. Rev. Lett. 72, 3823–3826 (1994).
[Crossref] [PubMed]

Tam, H.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Toupin, C.

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

von der Linde, D.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Vu, B.-T. V.

B.-T. V. Vu, A. Szoke, and O. L. Landen, “Time-resolved probing of electron thermal transport in plasma produced by femtosecond laser pulses,” Phys. Rev. Lett. 72, 3823–3826 (1994).
[Crossref] [PubMed]

Wang, W.

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Wang, X.

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Widmann, K.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

Williamson, S.

S. Williamson, G. Mourou, and J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984).
[Crossref]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[Crossref]

Zhang, J.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Zhang, Z.

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Zheng, J.

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Zhou, P.

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

Zhu, P.

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

Appl. Phys. A (1)

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Appl. Phys. Lett. (3)

M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. von der Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94, 101910 (2009).
[Crossref]

P. Zhu, J. Chen, R. Li, L. Chen, J. Cao, Z. M. Sheng, and J. Zhang, “Laser-induced short-range disorder in aluminum revealed by ultrafast electron diffuse scattering,” Appl. Phys. Lett. 103, 231914 (2013).
[Crossref]

P. Zhu, Z. Zhang, L. Chen, J. Zheng, R. Li, W. Wang, J. Li, X. Wang, J. Cao, D. Qian, Z. M. Sheng, and J. Zhang, “Four-dimensional imaging of the initial stage of fast evolving plasmas,” Appl. Phys. Lett. 97, 211501 (2010).
[Crossref]

J. Appl. Phys. (1)

A. S. Sandhu, A. K. Dharmadhikari, and G. Ravindra Kumar, “Time resolved evolution of structural, electrical, and thermal properties of copper irradiated by an intense ultrashort laser pulse,” J. Appl. Phys. 97, 023526 (2005).
[Crossref]

Phys. Rev. E (1)

K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).
[Crossref]

Phys. Rev. Lett. (11)

L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Ppin, “Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets,” Phys. Rev. Lett. 83, 5015–5018 (1999).
[Crossref]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984).
[Crossref]

S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
[Crossref] [PubMed]

B.-T. V. Vu, A. Szoke, and O. L. Landen, “Time-resolved probing of electron thermal transport in plasma produced by femtosecond laser pulses,” Phys. Rev. Lett. 72, 3823–3826 (1994).
[Crossref] [PubMed]

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, “Resistivity of a simple metal from room temperature to 106 K,” Phys. Rev. Lett. 20, 2364–2367 (1988).
[Crossref]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[Crossref] [PubMed]

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett. 96, 055001 (2006).
[Crossref] [PubMed]

S. Williamson, G. Mourou, and J. C. M. Li, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984).
[Crossref]

G. Guethlein, M. E. Foord, and D. Price, “Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses,” Phys. Rev. Lett. 77, 1055–1058 (1996).
[Crossref] [PubMed]

Science (1)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Other (1)

W. L. Kruer, The Physics of Laser Plasma Interactions (Addision-Wesley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup. A time-delayed multicolor probe pulse samples the plasma excited by 30 fs pump pulse. The reflected and transmitted probe signal is recorded in a photodiode (PD) after being dispersed by a grating. The inset shows spectra of all three harmonics used as a probe. The individual harmonics are normalized to their peak amplitude.
Fig. 2
Fig. 2 Time-resolved reflectivity for the three harmonic probes for a fused silica target. The solid lines are the exponential decay curves fitted to the decaying part of reflectivity signal.
Fig. 3
Fig. 3 Transverse shadowgraphic snapshots captured by a time-delayed second harmonic probe pulse. The white arrow in figure (b) indicates the direction of the pump pulse exciting the front surface of 10 mm thick glass target at intensity of 2×1017 W cm−2. (a) – (d) shadowgrams at early time-delays (t < 20 ps) and (e) – (h) shadowgrams at long time delays (t > 50 ps). (i) plasma expansion speed, estimated from the plasma expansion towards vacuum. (j) plasma expansion speed for early time delays estimated from Doppler spectrometry.
Fig. 4
Fig. 4 (a) simultaneous time-resolved measurement of reflectivity (green triangle) and transmission (orange square) of second harmonic probe from a fused silica target. The violet circle indicates signal loss (L) = 1− (R + T), where R and T are the measured second harmonic reflectivity and transmissivity, respectively. (b) time-resolved transmission of 800 nm, 400 nm and 266 nm probes for fused silica target.

Tables (1)

Tables Icon

Table 1 Wavelength dependent reflectivity decay rate and estimated collision frequencies. λ : probe wavelength, nc: critical density of probe, τ: reflectivity decay rate, νei(nc): electron-ion collision frequency estimated at nc.

Metrics