Abstract

We present a novel approach for the measurement of chromatic-dispersion in long optical fibers using a modulation phase-shift method based on a Kerr phase-interrogator. This approach utilizes a Kerr phase-interrogator to measure the phase variation of a sinusoidal optical signal induced by traveling in a fiber under test as the laser carrier wavelength and the sinusoidal signal frequency are varied. Chromatic-dispersion measurement for several fibers including a standard single-mode silica fiber and a dispersion-shifted fiber is experimentally demonstrated. The ultrafast response of the Kerr phase-interrogator opens the way for real-time monitoring of chromatic-dispersion in kilometers-long optical fibers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR

Chams Baker, Benoit Vanus, Marc Wuilpart, Liang Chen, and Xiaoyi Bao
Opt. Express 24(17) 19424-19434 (2016)

Sensitivity enhancement beyond the wavelength limit in a novel sub-micron displacement sensor

Chams Baker, Liang Chen, and Xiaoyi Bao
Opt. Express 23(14) 17838-17844 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen and C. Lin, “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 (1977).
    [Crossref] [PubMed]
  2. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
    [Crossref]
  3. K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 (2000).
    [Crossref]
  4. L. Zong, F. Luo, S. Cui, and X. Cao, “Rapid and accurate chromatic dispersion measurement of fiber using asymmetric sagnac interferometer,” Opt. Lett. 36(5), 660–662 (2011).
    [Crossref] [PubMed]
  5. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” Quantum Elec. 17(3), 404–407 (1981).
    [Crossref]
  6. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
    [Crossref]
  7. C. Baker and X. Bao, “Displacement sensor based on kerr induced phase-modulation of orthogonally polarized sinusoidal optical signals,” Opt. Express 22(8), 9095–9100 (2014).
    [Crossref] [PubMed]
  8. C. Baker, Y. Lu, J. Song, and X. Bao, “Incoherent optical frequency domain reflectometry based on a kerr phase-interrogator,” Opt. Express 22(13), 15370–15375 (2014).
    [Crossref] [PubMed]
  9. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21(24), 1966–1968 (1996).
    [Crossref] [PubMed]
  10. M. Rochette, C. Baker, and R. Ahmad, “All-optical polarization-mode dispersion monitor for return-to-zero optical signals at 40 gbits/s and beyond,” Opt. Lett. 35(21), 3703–3705 (2010).
    [Crossref] [PubMed]
  11. B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
    [Crossref]

2014 (2)

2011 (1)

2010 (1)

2000 (1)

1996 (1)

1993 (1)

B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
[Crossref]

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

1981 (2)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” Quantum Elec. 17(3), 404–407 (1981).
[Crossref]

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

1977 (1)

Abedin, K. S.

Ahmad, R.

Baker, C.

Bao, X.

Bødtker,

B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
[Crossref]

Boskovic, A.

Cao, X.

Chernikov, S. V.

Christensen, B.

B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
[Crossref]

Cohen, L. G.

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Cui, S.

Gruner-Nielsen, L.

Hyodo, M.

Jacobsen, G.

B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
[Crossref]

Levring, O. A.

Lin, C.

Lu, Y.

Luo, F.

Mark, J.

B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
[Crossref]

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Onodera, N.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Rochette, M.

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” Quantum Elec. 17(3), 404–407 (1981).
[Crossref]

Shang, H.-T.

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” Quantum Elec. 17(3), 404–407 (1981).
[Crossref]

Song, J.

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” Quantum Elec. 17(3), 404–407 (1981).
[Crossref]

Taylor, J. R.

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Zong, L.

Appl. Opt. (1)

Electron. Lett. (2)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

B. Christensen, J. Mark, G. Jacobsen, and Bødtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29(1), 132–134 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using led’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Quantum Elec. (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” Quantum Elec. 17(3), 404–407 (1981).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of (a) the dispersion measurement setup based on a Kerr phase-interrogator, and illustrations of the spectral evolution with the variation of (b) the laser wavelength λs and (c) sinusoidal optical signal frequency fs; dotted line indicates the variation of the power of the side-band as λl and fs are varied. RF: radio-frequency; CW: continuous-wave; EOM: electro-optic modulator; PC: polarization controller; FUT: fiber under test; FPS: fiber polarization splitter; FPC: fiber polarization combiner; EDFA: Erbium-doped fiber amplifier; and PD: photodiode.
Fig. 2
Fig. 2 Experimental results for chromatic-dispersion characterization of a single-mode fiber SMF-28 with L = 2.04 km showing (a) spectra at the output of the Kerr medium for several laser wavelengths λl, (b) side-band power P1 as a function of λl, (c) phase-difference Δϕ as a function of λl, and (d) chromatic-dispersion Dc as a function of λl along with values obtained using the standard modulation phase-shift method.
Fig. 3
Fig. 3 (a) Measured side-band power P1 and (b) the measured phase-difference as a function of f s f s init with f s init = 20 GHz .
Fig. 4
Fig. 4 Measured chromatic-dispersion D (λl) for several fibers. SMF-28: standard single-mode fiber with L = 2.04 km; BIF: bend-insensitive fiber with L = 5.96 km; LDF: low-dispersion fiber with L = 4.37 km.
Fig. 5
Fig. 5 Experimental results for chromatic-dispersion characterization of a dispersion-shifted fiber with L = 2.27 km showing (a) the measured P1 (λl), (b) measured phase-difference Δϕ(λl), and (c) measured chromatic-dispersion Dc (λl) along with the standard modulation phase-shift method measurement results.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( λ l ) = P 1 max cos 2 [ π f s t d ( λ l ) + ϕ 0 ] ,
Δ ϕ ( λ l ) = 1 2 arctan ( { 2 P 1 ( λ l ) / P 1 max 1 } 2 P 1 ( λ l ) / P 1 max 1 ) ϕ ref ,
Δ t d ( λ l ) = Δ ϕ ( λ l ) / π f s ,
D c ( λ l ) = 1 2 L d d λ l { Δ t d ( λ l ) } ,
Δ ϕ ( f s ) = 1 2 arctan ( { 2 P 1 ( f s ) / P 1 max 1 } 2 P 1 ( f s ) / P 1 max 1 ) ϕ init ,
t d = 1 π d Δ ϕ ( f s ) d f s .

Metrics