Abstract

In this paper, we analyze the relationship between viewer and viewing zones of integral imaging (II) system and present a partially-overlapped viewing zone (POVZ) based integral imaging system with a super wide viewing angle. In the proposed system, the viewing angle can be wider than the viewing angle of the conventional tracking based II system. In addition, the POVZ can eliminate the flipping and time delay of the 3D scene as well. The proposed II system has a super wide viewing angle of 120° without flipping effect about twice as wide as the conventional one.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-viewer tracking integral imaging system and its viewing zone analysis

Gilbae Park, Jae-Hyun Jung, Keehoon Hong, Yunhee Kim, Young-Hoon Kim, Sung-Wook Min, and Byoungho Lee
Opt. Express 17(20) 17895-17908 (2009)

Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array

Yunhee Kim, Jae-Hyeung Park, Sung-Wook Min, Sungyong Jung, Heejin Choi, and Byoungho Lee
Appl. Opt. 44(4) 546-552 (2005)

Viewing-angle-enhanced integral imaging system using a curved lens array

Yunhee Kim, Jae-Hyeung Park, Heejin Choi, Sungyong Jung, Sung-Wook Min, and Byoungho Lee
Opt. Express 12(3) 421-429 (2004)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  3. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  4. N. A. Dodgson, “Analysis of the viewing zone of the Cambridge autostereoscopic display,” Appl. Opt. 35(10), 1705–1710 (1996).
    [Crossref] [PubMed]
  5. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref] [PubMed]
  6. G. Park, J. Hong, Y. Kim, and B. Lee, “Enhancement of viewing angle and viewing distance in integral imaging by head tracking,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2009), DWB27.
  7. G. Park, J. H. Jung, K. Hong, Y. Kim, Y. H. Kim, S. W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17(20), 17895–17908 (2009).
    [Crossref] [PubMed]
  8. D. C. Hwang, J. S. Park, S. C. Kim, D. H. Shin, and E. S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
    [Crossref] [PubMed]
  9. C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt. 14(9), 095401 (2012).
    [Crossref]
  10. K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
    [Crossref] [PubMed]
  11. S. H. Jiao, X. G. Wang, M. C. Zhou, W. M. Li, T. Hong, D. Nam, J. H. Lee, E. H. Wu, H. T. Wang, and J. Y. Kim, “Multiple ray cluster rendering for interactive integral imaging system,” Opt. Express 21(8), 10070–10086 (2013).
    [Crossref] [PubMed]
  12. Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12(3), 421–429 (2004).
    [Crossref] [PubMed]
  13. G. Baasantseren, J. H. Park, K. C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17(16), 14405–14417 (2009).
    [Crossref] [PubMed]
  14. B. Lee, S. Jung, and J. H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27(10), 818–820 (2002).
    [Crossref] [PubMed]
  15. S. Jung, J. H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42(14), 2513–2520 (2003).
    [Crossref] [PubMed]
  16. H. Choi, J. H. Park, J. Kim, S. W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13(21), 8424–8432 (2005).
    [Crossref] [PubMed]
  17. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
    [Crossref] [PubMed]
  18. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  19. R. Taherkhani and K. Mohammad, “Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor,” 3D Res. 3.3, 1–7 (2012).
  20. C. C. Smyth, “Apparatus for tracking the human eye with a retinal scanning display, and method thereof,” U.S. Patent No. 6, 120, 461. 19 Sep. 2000.
  21. J. Nakamura, T. Takahashi, and Y. Takaki, “Enlargement of viewing freedom of reduced-view SMV display,” in IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics (2012).
  22. J. C. Yang, C. S. Wu, C. H. Hsiao, R. Y. Tsai, and Y. P. Hung, “Evaluation of an eye tracking technology for 3D display applications,” in 3DTV Conference (2008), p. 345.
    [Crossref]
  23. K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE Trans. Inf. Syst. E 90-D, 233–241 (2007).
  24. K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
    [Crossref] [PubMed]
  25. Kinect, http://www.kinectfordevelopers.com/ . Kinect is a registered trademark of Microsoft Corporation in the United States and/or other countries.

2013 (2)

2012 (4)

2011 (2)

2009 (2)

2007 (2)

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE Trans. Inf. Syst. E 90-D, 233–241 (2007).

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2004 (1)

2003 (1)

2002 (1)

1997 (1)

1996 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Arai, J.

Baasantseren, G.

Chen, N.

Cho, S. W.

Cho, Y.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE Trans. Inf. Syst. E 90-D, 233–241 (2007).

Choi, H.

Choi, H. J.

Choi, J. H.

Deng, H.

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt. 14(9), 095401 (2012).
[Crossref]

Dodgson, N. A.

Erdenebat, M. U.

Hahn, J.

Hong, J.

Hong, K.

Hong, T.

Hoshino, H.

Hwang, D. C.

Javidi, B.

Jeong, J. S.

Ji, C. C.

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt. 14(9), 095401 (2012).
[Crossref]

Jiao, S. H.

Jung, J. H.

Jung, S.

Kim, E. S.

Kim, H.

Kim, J.

Kim, J. Y.

Kim, N.

Kim, S. C.

Kim, Y.

Kim, Y. H.

Kwon, K. C.

Lee, B.

Lee, J. H.

Li, W. M.

Lim, Y. T.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Martinez-Corral, M.

Martínez-Corral, M.

Martínez-Cuenca, R.

Min, S. W.

Mohammad, K.

R. Taherkhani and K. Mohammad, “Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor,” 3D Res. 3.3, 1–7 (2012).

Nakamura, J.

Nam, D.

Navarro, H.

Okano, F.

Park, C.

Park, G.

Park, J. H.

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

G. Baasantseren, J. H. Park, K. C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17(16), 14405–14417 (2009).
[Crossref] [PubMed]

H. Choi, J. H. Park, J. Kim, S. W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13(21), 8424–8432 (2005).
[Crossref] [PubMed]

Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12(3), 421–429 (2004).
[Crossref] [PubMed]

S. Jung, J. H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42(14), 2513–2520 (2003).
[Crossref] [PubMed]

B. Lee, S. Jung, and J. H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27(10), 818–820 (2002).
[Crossref] [PubMed]

Park, J. S.

Park, K. S.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE Trans. Inf. Syst. E 90-D, 233–241 (2007).

Saavedra, G.

Shin, D. H.

Stern, A.

Taherkhani, R.

R. Taherkhani and K. Mohammad, “Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor,” 3D Res. 3.3, 1–7 (2012).

Takaki, Y.

Tanaka, K.

Wang, H. T.

Wang, Q. H.

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt. 14(9), 095401 (2012).
[Crossref]

Wang, X. G.

Wu, E. H.

Xiao, X.

Yoo, K. H.

Yuyama, I.

Zhou, M. C.

3D Res. (1)

R. Taherkhani and K. Mohammad, “Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor,” 3D Res. 3.3, 1–7 (2012).

Appl. Opt. (6)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

IEICE Trans. Inf. Syst. E (1)

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE Trans. Inf. Syst. E 90-D, 233–241 (2007).

J. Opt. (1)

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt. 14(9), 095401 (2012).
[Crossref]

Opt. Express (9)

S. H. Jiao, X. G. Wang, M. C. Zhou, W. M. Li, T. Hong, D. Nam, J. H. Lee, E. H. Wu, H. T. Wang, and J. Y. Kim, “Multiple ray cluster rendering for interactive integral imaging system,” Opt. Express 21(8), 10070–10086 (2013).
[Crossref] [PubMed]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express 20(2), 732–740 (2012).
[Crossref] [PubMed]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
[Crossref] [PubMed]

G. Baasantseren, J. H. Park, K. C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17(16), 14405–14417 (2009).
[Crossref] [PubMed]

G. Park, J. H. Jung, K. Hong, Y. Kim, Y. H. Kim, S. W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17(20), 17895–17908 (2009).
[Crossref] [PubMed]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12(3), 421–429 (2004).
[Crossref] [PubMed]

H. Choi, J. H. Park, J. Kim, S. W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13(21), 8424–8432 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (5)

Kinect, http://www.kinectfordevelopers.com/ . Kinect is a registered trademark of Microsoft Corporation in the United States and/or other countries.

G. Park, J. Hong, Y. Kim, and B. Lee, “Enhancement of viewing angle and viewing distance in integral imaging by head tracking,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2009), DWB27.

C. C. Smyth, “Apparatus for tracking the human eye with a retinal scanning display, and method thereof,” U.S. Patent No. 6, 120, 461. 19 Sep. 2000.

J. Nakamura, T. Takahashi, and Y. Takaki, “Enlargement of viewing freedom of reduced-view SMV display,” in IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics (2012).

J. C. Yang, C. S. Wu, C. H. Hsiao, R. Y. Tsai, and Y. P. Hung, “Evaluation of an eye tracking technology for 3D display applications,” in 3DTV Conference (2008), p. 345.
[Crossref]

Supplementary Material (2)

» Media 1: MOV (969 KB)     
» Media 2: MOV (3399 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Architecture of the proposed POVZ based II system.
Fig. 2
Fig. 2 Comparison of viewing zones between (a) the conventional tracking based II system and (b) the proposed POVZ II system.
Fig. 3
Fig. 3 Relationship between the viewing zones and the AEIAs in the POVZ II system.
Fig. 4
Fig. 4 Generation process for AEIAs of the proposed POVZ II system.
Fig. 5
Fig. 5 Experimental setup of the II system with super wide viewing angle.
Fig. 6
Fig. 6 3D scene built in experiments.
Fig. 7
Fig. 7 AEIAs and viewing zones (a) the A0, 0 and corresponding elemental images, (b) the A3, 0 and corresponding elemental images, (c) the region of V0, 0, (d) the region of V3, 0.
Fig. 8
Fig. 8 Viewing angle of the conventional II system and movie (Media 1): (a) leftmost view, (b) middle view, (c) rightmost view; and viewing angle of the POVZ II system and movie (Media 2): (d) leftmost view, (f) middle view, (h) rightmost view, (e) and (g) comparison to the conventional II viewing angle.

Tables (2)

Tables Icon

Table 1 Configuration parameters and experiment environment of the proposed II system

Tables Icon

Table 2 Region of POVZ and the trigger angle in experiment

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

θ v c θ t r + θ 0 .
θ v θ t r + 2 θ 0 ε min ,
θ = ( arc tan ( x z ) , arc tan ( y z ) ) .
i = { r o u n d ( g ( 1 t h ) r h x z ) | x | < x max = z tan ( θ t r 2 ) r o u n d ( g ( 1 t h ) r h tan ( θ t r 2 ) ) | x | x max ,
j = { r o u n d ( g ( 1 t v ) r v y z ) | y | < y max = z tan ( θ t r 2 ) r o u n d ( g ( 1 t v ) r v tan ( θ t r 2 ) ) | y | y max ,
Δ n i , j = ( Δ n i , j ) c + ( Δ n i , j ) a = ( ( Δ μ i , j ) c + ( Δ μ i , j ) a , ( Δ λ i , j ) c + ( Δ λ i , j ) a ) ,
( Δ μ i , j ) c = i ( 1 t h ) ,
( Δ μ i , j ) a = r o u n d ( u r h ( 1 t h ) 2 g tan ( θ t r 2 ) i ) ,
( Δ λ i , j ) c = j ( 1 t v ) ,
( Δ λ i , j ) a = r o u n d ( v r v ( 1 t v ) 2 g tan ( θ t r 2 ) j ) ,
Δ D i , j = ( ( ( Δ μ i , j ) c + ( Δ μ i , j ) a ) d , ( ( Δ λ i , j ) c + ( Δ λ i , j ) a ) d ) ,
I i , j ( p , q ) = I ( m , n ) m , n .
p = ( m + 1 ) × u m 1 + Δ c μ i , j + Δ a μ i , j ,
q = ( n + 1 ) × v n 1 + Δ c λ i , j + Δ a λ i , j .

Metrics