Abstract

A new-type slit spatial filter system with three lenses was proposed, in which the focal spot was turned into focal line by adding cylindrical lenses to increase focal area and then lower the focal intensity. Its performances on image relay, aperture matching and spatial filtering are comprehended by detailed theoretical calculations and numerical simulation. According to transmission spatial filter in national ignition facility, we present a replaceable slit spatial filter, which can reduce the overall length of laser system, improve the beam quality and suppress or even avoid the pinhole (slit) closure in the spatial filter.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Filtering characteristics of a three-lens slit spatial filter for high-power lasers

Han Xiong, Tiancheng Yu, Fan Gao, Xiang Zhang, and Xiao Yuan
Opt. Lett. 42(22) 4593-4595 (2017)

Suppression of progressive growth of intensity modulations with slit spatial filter in a laser system

Zhenwu Zhuang, Xiang Zhang, Muyu Yi, Xiong Han, and Xiao Yuan
Opt. Lett. 41(22) 5389-5392 (2016)

Spatial filter pinhole for high-energy pulsed lasers

Peter M. Celliers, Kent G. Estabrook, Russell J. Wallace, James E. Murray, Luiz B. Da Silva, Brian J. MacGowan, Bruno M. Van Wonterghem, and Kenneth R. Manes
Appl. Opt. 37(12) 2371-2378 (1998)

References

  • View by:
  • |
  • |
  • |

  1. N. N. Akhmediev, V. I. Korneev, and R. F. Nabiev, “Modulation instability of the ground state of the nonlinear wave equation: optical machine gun,” Opt. Lett. 17(6), 393–395 (1992).
    [Crossref] [PubMed]
  2. J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and J. A. Caird, “Spatial filter pinhole development for the National Ignition Facility,” Appl. Opt. 39(9), 1405–1420 (2000).
    [Crossref] [PubMed]
  3. J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
    [Crossref]
  4. J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
    [Crossref]
  5. S. Sato and H. Ashida, “Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation,” Opt. Lett. 25(1), 49–51 (2000).
    [Crossref] [PubMed]
  6. W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).
  7. A. C. Erlandson, “Spatial filter for high average power lasers,” US Patent: 8,320,056, 1–15 (2012).
  8. A. A. Tovar, “Propagation of flat-topped multi-Gaussian laser beams,” J. Opt. Soc. Am. A 18(8), 1897–1904 (2001).
    [Crossref] [PubMed]
  9. J. Chen, “Propagation and transformation of flat-topped multi-Gaussian beams in a general nonsymmetrical apertured double-lens system,” J. Opt. Soc. Am. A 24(1), 84–92 (2007).
    [Crossref] [PubMed]
  10. Y. Gao, B. Zhu, D. Liu, and Z. Lin, “Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures,” Opt. Express 17(15), 12753–12766 (2009).
    [Crossref] [PubMed]
  11. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chaps. 3 and 5.

2009 (1)

2007 (1)

2001 (1)

2000 (2)

1999 (1)

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
[Crossref]

1996 (1)

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

1992 (1)

1983 (1)

W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).

Akhmediev, N. N.

Ashida, H.

Boley, C. D.

Bonneau, F.

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
[Crossref]

Caird, J. A.

Chen, J.

Estabrook, K. G.

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and J. A. Caird, “Spatial filter pinhole development for the National Ignition Facility,” Appl. Opt. 39(9), 1405–1420 (2000).
[Crossref] [PubMed]

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
[Crossref]

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Feit, M. D.

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Gao, Y.

Korneev, V. I.

Li, Y.

W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).

Lin, Z.

Liu, D.

Milam, D.

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and J. A. Caird, “Spatial filter pinhole development for the National Ignition Facility,” Appl. Opt. 39(9), 1405–1420 (2000).
[Crossref] [PubMed]

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
[Crossref]

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Murray, J. E.

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and J. A. Caird, “Spatial filter pinhole development for the National Ignition Facility,” Appl. Opt. 39(9), 1405–1420 (2000).
[Crossref] [PubMed]

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
[Crossref]

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Nabiev, R. F.

Rubenchik, A. M.

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Sato, S.

Sell, W. D.

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Tovar, A. A.

Van Wonterghem, B. M.

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Wang, G.

W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).

Wang, S.

W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).

Yu, W.

W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).

Zhu, B.

Appl. Opt. (1)

Chin. J. Lasers (1)

W. Yu, G. Wang, S. Wang, and Y. Li, “Diagnosis and compensation of wavefront distortion of laser beams,” Chin. J. Lasers 10(4), 220–224 (1983).

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and F. Bonneau, “Spatial filter issues,” Proc. SPIE 3492, 496–503 (1999).
[Crossref]

J. E. Murray, K. G. Estabrook, D. Milam, W. D. Sell, B. M. Van Wonterghem, M. D. Feit, and A. M. Rubenchik, “Spatial filter issues,” Proc. SPIE 3047, 207–212 (1996).
[Crossref]

Other (2)

A. C. Erlandson, “Spatial filter for high average power lasers,” US Patent: 8,320,056, 1–15 (2012).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chaps. 3 and 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of slit SF with the combination of two cylindrical lenses and a spherical lens.
Fig. 2
Fig. 2 Focal lines at the focal planes. (a)3-dimensional view and (b) vertical view of spatial spectrum in plane of slit-I. (c) 3-dimensional view and (d) vertical view of spatial spectrum in plane of slit-II.
Fig. 3
Fig. 3 The marked positions of focal planes.
Fig. 4
Fig. 4 Simulation of image relaying. In situation of 1 time aperture matching, (a), (b) and (c) are the incident beam, the relayed beam with pinhole SF and the relayed beam with slit SF, respectively. In situation of 4 times aperture matching, (d), (e) and (f) are the incident beam, the relayed beam with pinhole SF and the relayed beam with slit SF, respectively.
Fig. 5
Fig. 5 Simulation of spatial filtering. (a) and (b) are the incident beam and its spatial spectrum, respectively. The spatial spectrum is 3-dimensional and shown in side view, and the insertion in (b) is the spatial spectrum shown in vertical view. (c) and (d) are the filtered beam with pinhole SF and its spatial spectrum, and (e) and (f) are the filtered beam with slit SF and its spatial spectrum, respectively.
Fig. 6
Fig. 6 The spatial spectra of the filtered beams. (a), (b) and (c) are the filtered spectra with pinhole SF at the beam quality of 8XDL, 10XDL and 12XDL, respectively. (d), (e) and (f) are the filtered spectra with slit SF at the beam quality of 8XDL, 10XDL and 12XDL, respectively.
Fig. 7
Fig. 7 The near-field distribution of the filtered beams. (a), (b) and (c) are the filtered beams with pinhole SF at the beam quality of 8XDL, 10XDL and 12XDL, respectively. (d), (e) and (f) are the subtraction of the near-field distribution for the filtered beams of slit SF and pinhole SF at the beam quality of 8XDL, 10XDL and 12XDL, respectively.
Fig. 8
Fig. 8 Spatial filtering effect of pinhole and slit SFs. (a) and (b) are the incident beam and its PSD, respectively. (c) and (d) are the filtered beam with TSF in NIF system and its PSD, respectively. (e) and (f) are the filtered beam with slit SF when focal length is at 7 meters and its PSD, respectively.
Fig. 9
Fig. 9 The dependence of peak intensity and the intensities on the inner edge of the slits with the focal length of lenses.

Tables (1)

Tables Icon

Table 1 The near-field parameters and corresponding intensities on inner edge of slits of the filtered beams at different cutoff frequencies.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U i (x,y)= m=R R exp[ (xmW) 2 W 2 ] n=R R exp[ (ynW) 2 W 2 ] m=R R exp( m 2 ) n=R R exp( n 2 ) ,
U o (x,y)= exp(ikS) m=R R exp( m 2 ) n=R R exp( n 2 ) ik W 2 N(2 z 1 ik W 2 )+ 2 z 2 /N × m=R R exp[ ik (x+NmW) 2 N 2 (2 z 1 ik W 2 )+2 z 2 ] n=R R exp[ ik (y+NnW) 2 N 2 (2 z 1 ik W 2 )+2 z 2 ] ,
U o (x,y)= m=R R exp[ (x/N +mW) 2 W 2 ] n=R R exp[ (y/N +nW) 2 W 2 ] N m=R R exp( m 2 ) n=R R exp( n 2 ) ,
z 1 N 2 z 2 =(N1)Nf,
z 1 N 2 N 2 f= z 2 Nf,
z 1 =f,
z 2 =Nf,
C= 1 I avg t=1 n ( I i I avg ) 2 /n .

Metrics