Abstract

In this paper, we numerically demonstrate the advantage of utilizing continuous amplitude and phase modulation in super-oscillation focusing lens design. Numerical results show that compared with simple binary amplitude modulation, continuous amplitude and phase modulation can greatly improve the super-oscillation focusing performance by increasing the central lobe intensity and the ratio of its energy to the total energy, reducing the sidelobe intensity, and substantially extending the field of view. Our study also reveals the role of phase distribution in reducing the spatial frequency bandwidth of the super-oscillation optical field on the focal plane. Based on continuous amplitude and binary phase modulation, a lens was designed with double layer metal slit array for wavelength of 4.6 µm. COMSOL is used to carry out the 2D simulation. The lens focal length is 40.18λ and the focal spot FWHM is 0.308λ. Two largest sidelobes are located right next to the central lobe with intensity about 40% of the central lobe intensity. Except for the two sidelobes, other sidelobes have intensity less than 25% of the central lobe intensity, which leads to a clear field of view on the whole focal plane.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light

Gang Chen, Kun Zhang, Anping Yu, Xianyou Wang, Zhihai Zhang, Yuyan Li, Zhongquan Wen, Chen Li, Luru Dai, Senling Jiang, and Feng Lin
Opt. Express 24(10) 11002-11008 (2016)

Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

Peter Fiala, Yunqi Li, and Christophe Dorrer
Appl. Opt. 57(4) 763-771 (2018)

Far-field super-oscillation imaging based on the super-oscillation elements and PSF feature extraction algorithm

Qingkun Xie, Jing Wang, Yanru Jiang, Jian Liang, Enshi Qu, and Liyong Ren
J. Opt. Soc. Am. A 35(3) 491-495 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. T. F. Rogers and N. I. Zheludev, “Optical superoscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
    [Crossref]
  2. L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
    [Crossref] [PubMed]
  3. S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
    [Crossref] [PubMed]
  4. S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
    [Crossref] [PubMed]
  5. T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
    [Crossref]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [Crossref] [PubMed]
  7. N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
    [Crossref] [PubMed]
  8. T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
    [Crossref] [PubMed]
  9. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
    [Crossref] [PubMed]
  10. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
    [Crossref] [PubMed]
  11. K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
    [Crossref]
  12. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
    [Crossref] [PubMed]
  13. Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
    [Crossref]
  14. N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
    [Crossref]
  15. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]

2014 (2)

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

2013 (5)

E. T. F. Rogers and N. I. Zheludev, “Optical superoscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
[Crossref] [PubMed]

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

2012 (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Chen, G.

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

Chen, L.

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

Dennis, M. R.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Du, C.

S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
[Crossref] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

He, Y.

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

Huang, F. M.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

Huang, K.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Ishii, S.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Jin, N.

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[Crossref]

Kildishev, A. V.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Kotlyar, V. V.

Kovalev, A. A.

Li, Y.

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

Lindberg, J.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Liu, J.

Liu, T.

Liu, Y.

Luk’yanchuk, B.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Luo, X.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16(4), 2578–2583 (2008).
[Crossref] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Ning, Y.

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

O’Faolain, L.

Qiu, C. W.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Rahmat-Samii, Y.

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[Crossref]

Rogers, E. T. F.

E. T. F. Rogers and N. I. Zheludev, “Optical superoscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Roy, T.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Ruan, Z. C.

Savo, S.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Shin, W.

Stafeev, S. S.

Tan, J.

Tao, X.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Teng, J.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wang, C.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Wang, H.

Wang, Y.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Wen, Z.

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Xu, T.

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Yao, N.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Ye, H.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Yeo, S. P.

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Yin, S.

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35(6), 844–846 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Zhao, Z.

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

E. T. F. Rogers and N. I. Zheludev, “Optical superoscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

Zhou, C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Xu, C. Du, C. Wang, and X. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. He, Z. Wen, L. Chen, Y. Li, Y. Ning, and G. Chen, “Double-layer metallic holes lens based on continuous modulation of phase and amplitude,” IEEE Photon. Technol. Lett. 26(18), 1801–1804 (2014).
[Crossref]

IEEE Trans. Antennas Propag. (1)

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[Crossref]

J. Opt. (1)

E. T. F. Rogers and N. I. Zheludev, “Optical superoscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

Laser Photon. Rev. (1)

K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, and C. W. Qiu, “Optimization-free superoscillatory lens using phase and amplitude masks,” Laser Photon. Rev. 8(1), 152–157 (2014).
[Crossref]

Nano Lett. (3)

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, and X. Luo, “Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure,” Nanotechnology 24(13), 135203 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Transmission distribution of the super-oscillation focusing lens.
Fig. 2
Fig. 2 Focal plane optical intensity distribution for different lens designs with the same FWHM, Rsmax, and geometric size, but different modulation type.
Fig. 3
Fig. 3 The phase distribution on the focal plane for different lens designs.
Fig. 4
Fig. 4 (a) Intensity (solid) and phase (dashed) distribution of a super-oscillation field, and (b) the corresponding electrical field amplitude (solid) and the field real (dots) and imaginary (dashed) parts.
Fig. 5
Fig. 5 The Fourier spectrum of (a) the amplitude A(x) and (b) the complex field A(x)exp[jφ(x)] of the super-oscillation optical field, respectively, where f is the spatial frequency.
Fig. 6
Fig. 6 Optimized lens (a) amplitude and (b) phase spatial distribution.
Fig. 7
Fig. 7 Comparison between the diffraction patterns of the DMHL lens obtained in COMSOL and the designed diffraction patterns

Tables (2)

Tables Icon

Table 1 Comparison of Lenses Based on Different Designs

Tables Icon

Table 2 Parameters of Super-oscillation Focusing Lens Based on Continuous Amplitude and Binary Phase Modulation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ 2 φ( r )+( ln A 2 ( r ) )φ( r )=0 2 A( r )+[ k 2 | φ( r ) | 2 ]A( r )=0 , where k is wavenumber.

Metrics