Abstract

In a passive optical network (PON), discovery is a process that detects and registers newly connected optical network units (ONUs). A long-reach PON requires a longer discovery window, e.g., at least 1 ms for 100 km, due to the increased round-trip time between an optical line terminal (OLT) and an ONU. The longer discovery window consumes more network resources and issues longer service-interruption time. From this motivation, for a long-reach orthogonal frequency-division multiple access (OFDMA)-PON, we propose a discovery method using multiple subchannels, where each subchannel consists of one or several subcarrier(s). Compared to discovery using a single channel, the proposed discovery method can increase the number of successfully detected ONUs at the same resources (i.e., for a discovery window) and ensure seamless service support to already registered ONUs, by assigning some subchannels for discovery and the remainder for data transmission. We analyze the discovery efficiency (i.e., the number of successfully detected ONUs in the discovery process) based on a probability and optimize the discovery window size by numerical simulations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and Analysis of IPACT-Based Bandwidth Allocation for Delay Guarantee in OFDMA-PON

Hakjeon Bang, Kyeong-Hwan Doo, Seungil Myong, Giovanni Stea, and Chang-Soo Park
J. Opt. Commun. Netw. 5(11) 1236-1249 (2013)

High-capacity and low-cost long-reach OFDMA PON based on distance-adaptive bandwidth allocation

Xiaofeng Hu, Pan Cao, Jiayang Wu, Junming Mao, Jianxin Lv, Yuling Jiang, Ciyuan Qiu, Christine Tremblay, and Yikai Su
Opt. Express 23(2) 1249-1255 (2015)

Design Framework for Optimizing Maintenance Efficiency in OFDMA-PONs Supporting Wireline–Wireless Convergence

Xiaoxue Gong, Lei Guo, and Xin Fan
J. Opt. Commun. Netw. 9(5) 423-432 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  2. N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol. 30(4), 493–503 (2012).
    [Crossref]
  3. K. Kanonakis, E. Giacoumidis, and I. Tomkos, “Physical-layer-aware MAC schemes for dynamic subcarrier assignment in OFDMA-PON networks,” J. Lightwave Technol. 30(12), 1915–1923 (2012).
    [Crossref]
  4. H. Bang, K.-H. Doo, S. Myong, G. Stea, and C.-S. Park, “Design and analysis of IPACT-based bandwidth allocation for delay guarantee in OFDMA-PON,” J. Opt. Commun. Netw. 5(11), 1236–1249 (2013).
    [Crossref]
  5. IEEE 802.3av-2009, Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (IEEE, 2009).
  6. S. Bhatia and R. Bartos, “Closed-form expression for the collision probability in the IEEE Ethernet Passive Optical Network registration scheme,” J. Opt. Netw. 5(1), 1–14 (2006).
    [Crossref]
  7. Q. Cui, T. Ye, T. T. Lee, W. Guo, and W. Hu, “Throughput and efficiency of EPON registration protocol,” J. Lightwave Technol. 30(21), 3357–3366 (2012).
    [Crossref]
  8. I. Cano, M. C. Santos, V. Polo, F. X. Escayola, and J. Prat, “Dimensioning of OFDMA PON with non-preselected independent ONUs sources and wavelength-control,” Opt. Express 20(1), 607–613 (2012).
    [Crossref] [PubMed]
  9. J. Kim, H. Bang, and C.-S. Park, “Design and performance analysis of passively extended XG-PON with CWDM upstream,” J. Lightwave Technol. 30(11), 1677–1684 (2012).
    [Crossref]
  10. J. Kim and C.-S. Park, “Optical design and analysis of CWDM upstream TWDM PON for NG-PON2,” Opt. Fiber Technol. 19(3), 250–258 (2013).
    [Crossref]
  11. C.H. Yeh, C.W. Chow, H.Y. Chen, and B.W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express 19(27), 26150–26160 (2011).
    [Crossref]
  12. M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery process for emerging 10 Gb/s EPONs,” IEEE Commun. Mag. 46(11), 82–90 (2008).
    [Crossref]
  13. S. Lallukka and P. Raatikainen, “Link utilization and comparison of EPON and GPON access network cost,” IEEE GLOBECOM’05, St. Louis, Missouri, USA (2005).

2013 (2)

2012 (6)

2011 (1)

2008 (1)

M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery process for emerging 10 Gb/s EPONs,” IEEE Commun. Mag. 46(11), 82–90 (2008).
[Crossref]

2006 (1)

Bang, H.

Bartos, R.

Bhatia, S.

Borges, N.

M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery process for emerging 10 Gb/s EPONs,” IEEE Commun. Mag. 46(11), 82–90 (2008).
[Crossref]

Cano, I.

Chen, B.W.

Chen, H.Y.

Chow, C.W.

Cui, Q.

Cvijetic, M.

Cvijetic, N.

da Silva, H. J. A.

M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery process for emerging 10 Gb/s EPONs,” IEEE Commun. Mag. 46(11), 82–90 (2008).
[Crossref]

Doo, K.-H.

Escayola, F. X.

Giacoumidis, E.

Guo, W.

Hajduczenia, M.

M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery process for emerging 10 Gb/s EPONs,” IEEE Commun. Mag. 46(11), 82–90 (2008).
[Crossref]

Hu, W.

Huang, M.-F.

Huang, Y.-K.

Ip, E.

Kanonakis, K.

Kim, J.

J. Kim and C.-S. Park, “Optical design and analysis of CWDM upstream TWDM PON for NG-PON2,” Opt. Fiber Technol. 19(3), 250–258 (2013).
[Crossref]

J. Kim, H. Bang, and C.-S. Park, “Design and performance analysis of passively extended XG-PON with CWDM upstream,” J. Lightwave Technol. 30(11), 1677–1684 (2012).
[Crossref]

Lallukka, S.

S. Lallukka and P. Raatikainen, “Link utilization and comparison of EPON and GPON access network cost,” IEEE GLOBECOM’05, St. Louis, Missouri, USA (2005).

Lee, T. T.

Myong, S.

Park, C.-S.

Polo, V.

Prat, J.

Raatikainen, P.

S. Lallukka and P. Raatikainen, “Link utilization and comparison of EPON and GPON access network cost,” IEEE GLOBECOM’05, St. Louis, Missouri, USA (2005).

Santos, M. C.

Stea, G.

Tomkos, I.

Wang, T.

Ye, T.

Yeh, C.H.

IEEE Commun. Mag. (1)

M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery process for emerging 10 Gb/s EPONs,” IEEE Commun. Mag. 46(11), 82–90 (2008).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Express (2)

Opt. Fiber Technol. (1)

J. Kim and C.-S. Park, “Optical design and analysis of CWDM upstream TWDM PON for NG-PON2,” Opt. Fiber Technol. 19(3), 250–258 (2013).
[Crossref]

Other (2)

IEEE 802.3av-2009, Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (IEEE, 2009).

S. Lallukka and P. Raatikainen, “Link utilization and comparison of EPON and GPON access network cost,” IEEE GLOBECOM’05, St. Louis, Missouri, USA (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 An example of discovery using a single channel.
Fig. 2
Fig. 2 An example of discovery using multiple subchannels.
Fig. 3
Fig. 3 Discovery subchannel representations (LSI: Lowest Subchannel Index, HSI: Highest Subchannel Index).
Fig. 4
Fig. 4 Comparison of discovery slot sizes in both discovery processes (a) using a single channel and (b) multiple subchannels, at the same resources for a discovery window.
Fig. 5
Fig. 5 Number of discovered ONUs versus number of unregistered ONUs: (a) in accordance with D=1025μs, 1050μs, 1100μs, (b) in accordance with v=1, 2, 3, 4 at the same resource consumption, (c) in accordance with S=1, 4, 16, 128, 512, and (d) in accordance with v=1, 2 and m=4, 64.
Fig. 6
Fig. 6 Number of discovered ONUs versus discovery window size: (a) in accordance with h=10, 20, 40, and (b) in accordance with v=1, 2, 3, 4.
Fig. 7
Fig. 7 Consumed bits per one success (ECBPS,S) versus number of unregistered ONUs: (a) in accordance with v=1, 2, 3, 4, and (b) in accordance with S=1, 4, 16 and m=4, 64.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

D max all ( u i ) i + w + ( T OH + 8 l S r log 2 m ) .
w k v ( T OH + 8 l S r log 2 m ) .
D max all ( u i ) i + 1 + k v ( T OH + 8 l S r log 2 m ) .
F Z ( z i ) = { F Z , 1 ( z i ) = 0 , for z i u , F Z , 2 ( z i ) = ( z i u ) / w , for u < z i u + w , F Z , 3 ( z i ) = 1 , for u + w < z i ,
f Z ( z i ) = { f Z , 1 ( z i ) = 0 , for z i u , f Z , 2 ( z i ) = 1 / w , for u < z i u + w , f Z , 3 ( z i ) = 1 , for u + w < z i ,
p S ( k , v , z i = t ) = j = 1 , j i n Pr { | z i z j | T OH + 8 l S r log 2 m ; z i = t } = [ 1 Pr { z i T OH 8 l S r log 2 m z j z i + T OH + 8 l S r log 2 m ; z i = t } ] n 1 .
p S ( k , v , z i = t ) = [ 1 ( F Z ( t + T OH + 8 l S r log 2 m ) F Z ( t T OH 8 l S r log 2 m ) ) ] k / v 1 .
p ¯ S ( k , v ) = u u + w p S ( k , v , z i = t ) f Z ( z i = t ) d t .
p ¯ S ( k , v ) = { 2 v k ( 1 T OH w 8 l S r w log 2 m ) k / v , for T OH + 8 l S r log 2 m < w 2 T OH + 16 l S r log 2 m , 2 v k ( 1 T OH w 8 l S r w log 2 m ) k / v + ( 1 2 v k ) ( 1 2 T OH w 16 l S r w log 2 m ) k / v , for w > 2 T OH + 16 l S r log 2 m .
ϕ S ( k , v ) = v k v p ¯ S ( k , v ) k p ¯ S ( k , v ) .
ϕ ¯ S ( v ) = k = 1 ϕ S ( k , v ) = k = 1 k p ¯ S ( k , v ) P { N = k } .
ϕ ¯ S ( v ) = { Q 1 , for T OH + 8 l S r log 2 m < w 2 T OH + 16 l S r log 2 m , Q 1 + Q 2 + Q 3 , for w > 2 T OH + 16 l S r log 2 m ,
Q 1 = 2 v exp { h + h ( 1 T OH w 8 l S r w log 2 m ) 1 / v } , Q 2 = h ( 1 2 T OH w 16 l S r w log 2 m ) 1 / v [ exp ( h ) + exp { h + h ( 1 2 T OH w 16 l S r w log 2 m ) 1 / v } ] , Q 3 = 2 v exp { h + h ( 1 2 T OH w 16 l S r w log 2 m ) 1 / v } .
E CBPS , S ( v ) = v D r log 2 m S ϕ ¯ S ( v ) .
p ¯ S ( k , v ) p ¯ S ( n , 1 ) .
p ¯ S ( n , 1 ) = u u + w L ( 1 F Z ( t + L ) ) n 1 f Z ( t ) d t + u + L u + w ( F Z ( t L ) ) n 1 f Z ( t ) d t .
p ¯ S ( n , 1 ) = 0 w L ( 1 t + L w ) n 1 1 w d t + L w ( t L w ) n 1 1 w d t = 2 n ( 1 T OH w 8 l S r w log 2 m ) n .
p ¯ S ( n , 1 ) = u u + L { 1 F Z ( t + L ) } n 1 f Z ( t ) d t + u + L u + w L { 1 ( F Z ( t + L ) F Z ( t L ) ) } n 1 f Z ( t ) d t + u + w L u + w { F Z ( t L ) } n 1 f Z ( t ) d t .
p ¯ S ( n , 1 ) = 0 L ( 1 t + L w ) n 1 1 w d t + L w L ( 1 2 L w ) n 1 1 w d t + w L w ( t L w ) n 1 1 w d t = 2 n ( 1 T OH w 8 l S r w log 2 m ) n + ( 1 2 n ) ( 1 2 T OH w 16 l S r w log 2 m ) n .
ϕ ¯ S ( v ) = k = 1 k 2 v k ( 1 L w ) k / v h k e h k ! = 2 v k = 1 { h ( 1 L w ) 1 / v } k e h ( 1 L w ) 1 / v k ! e h e h ( 1 L w ) 1 / v = 2 v exp { h + h ( 1 T OH w 8 l S r w log 2 m ) 1 / v } .
ϕ ¯ S ( v ) = k = 1 k { 2 v k ( 1 L w ) k / v + ( 1 2 v k ) ( 1 2 L w ) k / v } h k e h k ! = 2 v k = 1 ( 1 L w ) k / v h k e h k ! + k = 1 ( 1 2 L w ) k / v h k e h ( k 1 ) ! 2 v k = 1 ( 1 2 L w ) k / v h k e h k ! .
Q 2 = k = 1 ( 1 2 L w ) k / v h k e h ( k 1 ) ! = h ( 1 2 L w ) 1 / v [ 1 h 0 e h ( 0 ) ! + k = 2 { h ( 1 2 L w ) 1 / v } k 1 e h ( 1 2 L w ) 1 / v ( k 1 ) ! e h e h ( 1 2 L w ) 1 / v ] = h ( 1 2 L w ) 1 / v { e h + e h e h ( 1 2 L w ) 1 / v } = h ( 1 2 T OH w 16 l S r w log 2 m ) 1 / v [ exp ( h ) + exp { h + h ( 1 2 T OH w 16 l S r w log 2 m ) 1 / v } ] ,
Q 3 = 2 v k = 1 ( 1 2 L w ) k / v h k e h k ! = 2 v k = 1 { h ( 1 2 L w ) 1 / v } k e h ( 1 2 L w ) 1 / v k ! e h e h ( 1 2 L w ) 1 / v = 2 v exp { h + h ( 1 2 T OH w 16 l S r w log 2 m ) 1 / v } ,

Metrics